
IiC IILE COEY

R NAVAL POSTGRADUATE SCHOOL
Monterey, California

N

THESIS

ISSUES IN EXPANDING THE SOFTWARE
BASE MANAGEMENT SYSTEM SUPPORTING

THE COMPUTER AIDED PROTOTYPING SYSTEM

by

James M. Huskins

Thesis Advisor: June 1990 Luqi

Approved for public release; distribution is unlimited. DTIC
EL'ECTE

JUL 2 3 1990etB

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION UNCLASSIFIEL lb. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

GA NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Computer Science Dept. (if applicable) National Science Foundation
Naval Postgraduate School 52

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943 Washington, D.C. 20550

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable) NSF CCR-8710737

Naval Postgraduate School I

Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNITMonterey CA 93943 ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)
ISSUES IN EXPANDNG THE SOFTWARE BASE MANAGEMENT SYSTEM SUPPORTNG THE COMPUTER AIDED PROTOTYPING SYSTEM.

12. PERSONAL AUTHOR(S
JAMES M. HUSKINS

13. TYPE OF REPORT 13b. IME COVERED]14. DATE OF REPORT (Year, Month, Day) 1s PAJ OUNT
Master's Thesis FROM 10/89 TO 06/90 1 June 1990 6

1. e views expressed in this thesis are those of te author and do not reflect the
official policy or position of the Department of Defense or the United States Government.

17. OSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SU -,, - rapid prototyping, models, programming languages, domain analysis,
-object-oriented database, software reuse

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
- This thesis proposes reorganizing the Software Base Management System of the Computer Aided Proto-

typing System (CAPS) to take better advantage of object-oriented database technology, domain analysis and
rule based systems. A method for using the Prototyping System -D .gription Language (PSDL) augmented
with domain dependent keywords to classify reusable Ada components anid organize them in an object-orient-
ed database is presented. A rule based structure needed to, implement this software base is also described.
Implementation of this structure is a goal for further research. '

20. DISTRIBUTON/AVAILABILTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIEDIUNLIMITED [] SAME AS RPT. [] DTIC USERS UNCLASSIFIED

224. NAAE OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Includ Area Code 22c. OFFICE SYMBOLLuqi (408) 646-2735 152Lq
DO FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete UNCLASSIFIED

i

Approved for public release; distribution is unlimited

ISSUES IN EXPANDING THE SOFTWARE
BASE MANAGEMENT SYSTEM SUPPORTING

THE COMPUTER AIDED PROTOTYPING SYSTEM.

by
James M.Huskins

Major, United States Army
B.S., United States Military Academy, 1977

M.S.E., Catholic University of America, 1987

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1990

Author: C ., 2'
' James M. Huskins

Approved By:
Luqi, Thesis Advisor

Valdis Berzins, SeconYReader

Robert B. McGhee, Chairman,
Department of Computer Science

ii

ABSTRACT

This thesis proposes reorganizing the Software Base Management System of the

Computer Aided Prototyping System (CAPS) to take better advantage of object-oriented

database technology, domain analysis and rule based systems. A method for using the

Prototyping System Description Language (PSDL) augmented with domain dependent

keywords to classify reusable Ada components and organize them in an object-oriented

database is presented. A rule based structure needed to implement this software base is

also described. Implementation of this structure is a goal for further research.

Accession For

?4TlS RA&I
DTIC TAB E
Uxmrwounced LI
Just ietton

By

DI_ ribut ionf

Availab11tv Codes

rAvail and/or
Diet Special

iii

THESIS DISCLAIMER

Ada is a trademark of the U.S. government Ada Joint Program office. Ontos is
a commercial product of Ontologic Inc., Burlington, Massachusetts.

iv

TABLE OF CONTENTS

I. INTRODUCTION ... 1

A. THE SOFTWARE CRISIS 2

B. RELATED AREAS OF RESEARCH 3

1. Programming and Specification Languages 3

2. Prototyping and the Use of Expert Systems 4

3. Software Reuse 5

C. THE COMPUTER AIDED PROTOTYPING SYSTEM 6

D. GOALS OF THIS THESIS 7

II. BACKGROUND ... 9

A. CONDITIONS NECESSARY FOR EFFECTIVE REUSE 10

B. LIBRARY CLASSIFICATION SCHEMES 11

C. INTEGRATION OF REUSE INTO ENVIRONMENTS 12

1. Types of Reuse in Existing Environments 12

2. Domain Analysis 14

D. AN IDEAL SOFTWARE GENERATION SYSTEM 18

v

V

E. THE COMPUTER AIDED PROTOTYPING SYSTEM

ENVIRONMENT 19

F. OBJECT-ORIENTED DATABASES 22

1. Object-Oriented Concepts 22

2. The Class Hierarchy of Objects 24

3. Object-Oriented Programming and Rapid Prototyping 25

4. A Database of Objects to Support Rapid Prototyping 26

G. DATABASE SUPPORT OF CAPS 28

III. PSDL AND THE CAPS ENVIRONMENT 30

A. PSDL AS A CLASSIFICATION LANGUAGE 31

1. Mapping PSDL Descriptions to Ada source code 31

2. Using PSDL to classify components 33

3. The Generalization Lattice Structure 34

4. The class hierarchy of components 38

B. SEARCHING THE OBJECT-ORIENTED DATABASE 41

1. The Form of the Database Query 41

2. The Structure of the RULE Objects 42

3. The Transformation Process 44

C. A SAMPLE USE OF THE CLASSIFICATION SCHEME 47

vi

1. Classification of the Reusable Component 47

2. Retrieval of Components from the Software Base 49

IV. CONCEPTUAL DESIGN OF THE SOFTWARE BASE 52

A. THE REUSABLE SOFTWARE BASE SYSTEM ARCHITECTURE . 53

1. The Preprocessor 54

2. The Decision Support Module 55

3. The Object-Oriented Database 55

B. THE STRUCTURE OF THE OBJECT-ORIENTED DATABASE ... 56

1. The TYPE Objects 58

2. The OPERATOR Objects 61

3. The RULE Objects 65

C. SUPPORT OBJECT CLASSES AND COMPOSITION OF OBJECTS 68

V. IMPLEMENTATION ISSUES 69

A. THE ONTOS OBJECT-ORIENTED DATABASE SYSTEM 70

B. PROTOTYPING OF THE EXPERT SYSTEM COMPONENTS 72

C. THE REUSABLE SOFTWARE COMPONENTS 73

D. DEVELOPMENT STRATEGY 74

vii

VI. CONCLUSIONS AND RECOMMENDATIONS 75

A. SUM M ARY . .. 75

B. RECOMMENDATIONS FOR FURTHER RESEARCH 77

C. CONCLUSIONS 78

APPENDIX A. THE COMMON ADA MISSILE PARTS PROJECT 80

APPENDIX B. THE PSDL GRAMMAR 88

LIST OF REFERENCES 93

BIBLIOGRAPHY .. 96

INITIAL DISTRIBUTION LIST 100

viii

I. INTRODUCTION

This thesis addresses issues related to the reuse of software components in support

of a computer aided rapid prototyping environment. The specific system addressed in this

thesis is the Software Base component of the Software Database System, a subsystem of

the Computer Aided Prototyping System (CAPS). This portion of the Software Database

System stores previously developed Ada components for potential reuse by other

programs or subprograms.

This chapter provides background on some of the issues related to reuse of software

in general and the applicability of reuse to the rapid prototyping environment provided

by CAPS. Succeeding chapters present an overview of reuse concepts including some

of the more promising methods and research in this area. This is followed by an

evaluation of the current state of the Software Base component of the CAPS system and

the use of the Prototyping System Description Language (PSDL) as the basis for

classification and retrieval of software components from the reusable software base.

Domain analysis and its applicability to software development will be discussed via an

example, the Common Ada Missile Parts (CAMP) project sponsored by the Air Force and

performed by McDonnell Douglas Corporation from 1984-1988 [Ref. 1]. A conceptual

design of a software base incorporating the results of the CAMP domain analysis, object-

oriented concepts, and use of an augmented form of PSDL as the base language for

classification and retrieval of components is presented and contrasted with the CAMP

methodology.

This thesis addresses the specific problem of integrating reuse of Ada components

into CAPS. However, the methodology for development of the object hierarchy, the basic

rules for search path derivation, and the pattern matching process used in the

transformation of the augmented PSDL specification to a set of candidate reuse classes,

could easily be adapted to reusable components in other programming languages or other

reusable entities. Some suggestions of other reusable entities which may become

candidates for inclusion in the Software Base are included in the concluding section of

this thesis.

A. THE SOFTWARE CRISIS

The demand for larger and more complex software systems continues to increase.

Software development is a complex process. Programming large software systems

involves teams of developers, working on various parts of the system. Coordination of

this effort is an immense task. Our inability to deal with this complexity often results in

software projects that are late, over budget, and deficient in their stated requirements. The

problem involves not only the high cost of software development, but also in the poor

quality of existing software [Ref. 2: p. 3]. Modification is so difficult that maintenance

2

soaks up more than half of the total resources. This state of affairs is sometimes called

the "software crisis" [Ref. 3: p. 243].

While all acknowledge that the problem is there, few have any short term solutions.

In fact, it is estimated by many that we are still 10-15 years away from having the tools

we need to build the systems we would like to have now in a reliable manner [Ref. 4].

Research on the solutions to the software crisis seems to concentrate on three main areas:

programming .md specification languages, prototyping and knowledge based development,

and reuse of software artifacts. Most development work on advanced software

environments includes elements of all of these areas but few are concentrating on the

integration of all of these areas into a comprehensive environment which will have any

short term (within the next five to ten years) impact.

B. RELATED AREAS OF RESEARCH

The next sections briefly describe some of the major areas of research involved in

software development. All have potential long range benefits, but many are in the early

stages of development.

1. Programming and Specification Languages

This area addresses the support of sound software engineering practices

through the development of languages that support the development of reliable systems.

This includes both High Order Languages (HOL) that support the conventional

development and Very High Level Languages (VHLL) used primarily in artificial

3

intelligence. In the area of HOL support the Department of Defense took the lead with

the decision to designate Ada as the language for DoD systems. The development of Ada

as a language that offers great expressive power, is tightly controlled as a language, and

demands the use of sound software engineering practices is already showing benefits in

the development of software within DoD [Ref. 2: p. 8]. Very High Level Languages

have great expressive power and most allow the use of symbolic expressions to represent

functions and rules that support the development of expert systems. They have proven

to have the most benefit in limited, domain specific areas where knowledge can be

represented in the form of facts and rules. They have been used to a limited extent in the

software development and show great promise, particularly in the area of specification

assistance. The most notable efforts in this area are the Programmers Apprentice project

at MIT and the Specification Assistant portion of the Knowledge Based Software

Assistant project at Rome Air Development Center [Ref. 4]. Other notable VHLL's

include REFINE developed and distributed by Reasoning Systems Inc. and GIST

developed by the ISI at the University of Southern California [Ref. 41.

2. Prototyping and the Use of Expert Systems

Most of the major efforts in this area are focused on very narrow domains.

Prototyping is used in two primary contexts: as a tool to define user interfaces, or as a

method to test all or part of a system prior to entering a full scale development effort.

A great deal of the effort involved in prototyping is on the validation of user requirements

4

at an early stage of system development. This validation has the potential to greatly

reduce both the cost and time required to develop systems. In the context of software

development expert systems are used to aid the process through the use of knowledge

about the process as well as knowledge about specific problem domains. It is anticipated

that many of the database intensive activities being performed today will be replaced by

expert systems and knowledge based techniques in the future.

3. Software Reuse

Software reusability is widely believed to be a key to improving software

development productivity and quality [Ref. 4]. It also has the most potential in the short

term to show tangible benefits in a number of domains of application. It allows the

developer to write fewer lines of code and to spend less time organizing. To date the

promise offered by reusability is largely unfulfilled. Three factors that now make it

practical to formalize a model of reusable software [Ref. 2] :

1. Maturation of the software industry has resulted in an accepted body of knowledge
about data structures and algorithms.

2. A number of software engineering principles that help us deal with the problem of
developing massive software intensive systems have been recognized.

3. The development of Ada a language that offers great expressive power, is tightly
controlled as a language, and demands the use of sound software engineering practices.

Research in this area centers on two types of reusability technologies: composition

technologies and generation technologies. In composition technologies the components

5

to be reused are largely atomic, and ideally unchanged during the course of their reuse.

They can be thought of as building blocks that are combined to form larger programs (the

process of composition). Generation technologies use reusable pattern information and

weave the patterns together to generate new code [Ref. 41. Other problems of reuse

receiving a great deal of attention are the classification of components and organization

of libraries and software databases so that needed components can be found when needed.

These latter two problems which are the focus of later sections of this thesis.

C. THE COMPUTER AIDED PROTOTYPING SYSTEM

The computer aided prototyping system is an integrated environment aimed at

rapidly prototyping hard real-time embedded systems [Ref. 5]. This system differs in its

approach from most other prototyping systems in its approach to software generation from

a combination of translation and reuse methods. In its current state its approach to reuse

most closely resembles the composition approach described in the previous section.

However, the system also has a translation subsystem which is used to generate modules

from the PSDL specification. Therefore there is not a need for extremely sophisticated

composition systems which rely on low level components being combined into higher

level program units. CAPS instead relies on the software base component to reduce the

amount of work required of the prototyper and the translator by storing reusable

components that are known to be efficient, reliable pieces of code that can be described

using the pr-totyping language. These components may be at any level of detail, and

6

represent entire subsystems consisting of many lines of code. The challenge is to

organize the database of reusable component objects in a manner that the database can

be queried during a user session, using only the information available in the PSDL

description, and rapidly return a matching component or a message to the user that the

component is not available.

CAPS has a great deal of potential for short term benefit. Its architecture i-, also

opc., ',ough that it can take advantage of the results of emerging technologies in many

of its subsystems with minimum disturbance to the other subsystems. The prototyping

language (PSDL) is a relatively small, yet powerful, language which should allow the

system to represent constructs in many domains. Domains can be described by

augmenting PSDL with domain specific keywords. This feature of PSDL has not been

tested in any previous research. This thesis presents a method of using an augmented

form of PSDL for both classification and retrieval of reusable software components.

D. GOALS OF THIS THESIS

The goal of this thesis is to extend the current conceptual design of the reusable

software component base to more adequately meet the user's needs in the CAPS

prototyping environment. The structure of the objects used to encapsulate the reusable

components is detailed, including the attributes and methods which may be needed as the

CAPS system evolves. Domain analysis is incorporated into the system through the

augmentation of the PSDL language with keywords. A methodology for adding new

7

classes to the database with minimum disturbance of the existing hierarchy or data objects

is also developed in this thesis. Finally, a new, more generalized, method for searching

the database based on some simple rules stored in a specialized object class is presented.

The final design of the software base presented in this thesis is based on integrating

features of domain analysis, object-oriented databases, knowledge based systems, and

language specific aspects of a specific programming language, in this case Ada, to support

a prototyping environment using a higher order language, in this case PSDL. The focus

is on the processing required to translate a PSDL specification into a database query in

a form that reduces the search to the minimum required in support of the functional

environment identified by the prototyper.

8

II. BACKGROUND

This chapter contains material on the development of an effective mechanism for

reuse of components in a rapid prototyping environment. A brief discussion of the

necessary and sufficient conditions for reuse is followed by an overview of some of the

more prominent strategies used in organization of libraries and databases of reusable

components. A more detailed discussion of reuse issues can be found in previous thesis

work by Galik [Ref. 6] and Steigerwald [Ref. 7],the CAMP overview document [Ref. 1],

and various other articles [Refs. 2,3]. The major types of software generation

environments and their approaches to reuse as well as integration mechanisms are

discussed in some detail. Since the major area of concern of this thesis is the problem

of improving and more effectively integrating reuse into the CAPS system using object-

oriented database technology, an overview of object-oriented concepts and databases, the

current status of the database of reusable components supporting CAPS, and its position

in the overall CAPS environment are presented here as well. In subsequent chapters the

Prototyping System Description Language and its relation to the Ada language is

discussed. PSDL is also evaluated for its potential as a classification and retrieval

language for reusable Ada components. The concepts presented here will be used in this

discussion.

9

A. CONDITIONS NECESSARY FOR EFFECTIVE REUSE

In order to effectively reuse software components in any environment there are

several conditions that must be met. These operational problems fall into four main areas

and include [Ref. 4: p. 5]:

1) Finding components

2) Understanding components

3) Modifying components

4) Composing components

In this thesis the focus of effort is on finding and understanding components. Finding

components is more than just finding an exact match. It includes locating highly similar

components. It includes the classification of components included in the software base

and the organization of these components in a order to aid in search and retrieval

operations. Understanding components is primarily a documentation issue. But the

representation of descriptive information in a manner that can be useful to an interactive

user is of concern here. Modification and composition of components is related to how

components become parts of systems. This area is briefly addressed in this thesis. CAPS

can support these operations. Since CAPS is a prototyping environment rather than a

production environment or Software Generation System, the actual production of code is

not the primary objective of the system. As CAPS continues to evolve these areas will

10

become more important. The most important objective of the Software Base Management

System is the identification of potentially reusable code. Integration of the reusable

components into larger systems and programs is handled by other parts of the CAPS

system.

B. LIBRARY CLASSIFICATION SCHEMES

Reuse mechanisms can be found as a component of a number of software

development environments. The most basic means of incorporating reuse into a software

generation system is through the use of libraries. In a library of reusable components a

group of software components that support particular programming functions or narrow

domains of interest are placed in some common areas that are easily accessible by the

programmer. The most common example of libraries are the common functions found

in C libraries, and narrowly defined domains, such as math libraries in C and Ada

programming environments. These libraries are very useful, but have a major drawback.

These simple mechanisms are not automatically accessible without foreknowledge of their

composition. The design of an effective reuse system must allow the programmer to

identify the potentially reusable components without actually knowing of their existence.

This is the main problem addressed in the design of classification and retrieval

mechanisms.

Two schemes of classification are continually mentioned in discussions of

organization of reusable components. The most commonly mentioned is the Booch

11

Taxonomy of Ada components [Ref. 2]. Booch uses a descriptive method based on the

form of the component including information on the abstraction of the component and its

time and space properties [Ref. 2: p. 36]. His method is very useful in the general

categorization of components into their basic data structure related types. The other

method of classification developed by Prieto-Diaz takes a different approach. The Prieto-

Diaz scheme is based on organizing components to be processed using the relational

database model. He describes a tuple of six attributes that can be used to categorize any

component. Three of these are related to the functionality of the component and three

related to the environment [Ref. 8: pp. 280-2811.

C. INTEGRATION OF REUSE INTO ENVIRONMENTS

Classification and organization of components are only two issues related to the use

of reusable components in programming environments. There must also be some means

of integrating the components into the target program either in their stored form or in

some modified form. These are the problems of understandability and modification

addressed earlier. In this section a description of the approaches to integration of

components into various types of environments is presented.

1. Types of Reuse in Existing Environments

The major types of reuse found in existing programming environments are

based the approaches used in these systems. The major types of software generation

systems in use today are based on either the generation of components from some high

12

level language or the composition of existing components into larger programs and

systems. Systems using the generation approach attempt to generate source code through

the transformation of some higher order language into source level programming language

constructs using knowledge based techniques to control the transformation. The reuse of

transformation information stored in a database of programming knowledge is used to

accomplish the code generation. Systems developed using this approach have thus far

been inefficient and inadequate to the needs of embedded and hard real-time programs.

But there is a great deal of ongoing research in this area and it is generally

acknowledged that generation based systems are the systems of the future [Ref. 3].

Systems that have the most short term potential benefit are composition based.

Systems developed using the composition approach attempt to identify source components

and combine them into larger programs. Identification and integration can be guided by

programs that access the database or by knowledge based techniques. These systems can

store multiple versions of the same component and can generate much more efficient

systems. However the problem is how to decide the level of abstraction for the individual

components. Storage of large subsystems can provide gains in productivity at the cost

of overall program efficiency. Using large subsystems can result in the incorporation of

unused code into a program. Using small components is acceptable for small programs,

but the problem of how to find components in a large database of very small components

and combine them is much more complex. The programmer needs to understand more

13

about the details of the software base in order to adequately specify needed components.

The database designer has the problem of designing efficient methods for search, selection

and combination of the components. Another drawback of composition based systems

in general is the lack of any means of building components from scratch. If the

component is not in the library or database it provides only a message to the user.

2. Domain Analysis

Another approach to the organization and integration of reusable components

into a software generation system is to organize the reuse effort around the projected

application area or domain of interest. Using a process known as domain analysis [Refs.

1,8,91 the application area is broken down into the categories of subprograms or program

objects needed to implement needed functions and structures for parts of a system. A

domain analysis involves an intensive study of the application area and previous software

development efforts [Ref. 1: p. 7]. Products of the domain analysis may include parts

taxonomies or classification schemes for storing reusable components in databases,

domain languages for specifying software components, transformation rules used for

generating components from the specifications, and rules for composing subsystems from

combinations of smaller software components. This is the approach used in Draco and

the CAMP project. A more detailed summary of the process used by these two methods

and the products of domain analysis in each of these systems is described in the following

sections.

14

a. The Draco methodology

The Draco method involves the analysis of an application area, or domain,

in order to identify and codify the reusable concepts or objects, and models into a domain

language that can be interpreted by the Draco system and used in the generation of code.

The Draco method uses three analysts: an application domain analyst, a domain designer,

and a modeling domain analyst. The application domain analyst examines the needs and

requirements of systems in come common application domain, identifying the objects and

operations that are germane to an area of interest. Once identified this is given to the

domain designer who specifies the objects and operations in a manner known to the Draco

system. The modeling domain analyst is concerned with the methods used to model

domains in Draco. The primary concern is to insure that the system does not duplicate

existing domain descriptions when describing new domains.[Ref. 4: p. 302]

The end result of the analysis is a domain description of a particular domain in a

language that can interpreted by the Draco system. The Draco system is a tool that

combines generation and composition approaches by successively transforming statements

of the component specification in the domain language. Statements in the domain

language are parsed into internal form and may be [Ref. 4: pp. 306-307]:

1. prettyprinted back into the external syntax of the domain;

2. optimized into a statement in the same domain language;

15

3. taken as an input to a program generator that restates the problem in the same
domain;

4. analyzed for possible leads for optimization, generation,or refinement; or

5. implemented by software components, each of which contains multiple
refinements and which make implementation decisions by restating problem in
other domain languages.

The Draco system recognizes the use of actual source code as valuable to short term

productivity but is oriented toward generation technologies as the long term solution [Ref.

4: p. 316]. However they do recognize the need for analysis at the major subsystem level

as a means of constraining and smoothing the modelling process, particularly in the early

stages of design. The reuse of design and modelling information that may still be

modified prior to the production of actual code is limited to subsystems that are already

known, or previously developed and stored in Draco [Ref. 4: pp. 315-316].

b. The CAMP methodology.

One of the objectives of the CAMP project was to evaluate the utility of

source code reuse to the maximum extent. Their domain analysis was oriented toward

the identification of the areas of missile software systems that had commonality. They

did this by studying ten previously developed missile related software systems. The result

of this domain analysis and commonality study was the identification of seven major

areas in the domain of interest. Within these areas a total of 21 categories of components

were developed. The CAMP parts taxonomy is based on classifying components into

16

these 21 categories. The taxonomy is shown in Figure 2.1 [Ref. 11. The category of each

part is an attribute in the database of CAMP parts which was developed using Oracle,

another package using the relational model.

....... PAA~1~~ R(=$$ MANA4 ;MET.PAR.
....... -Aycho1U Cont rols
... ta itp -Corrunricationa

... a.e.... toeb

~Viatien.:X -CoordCinte rsion

.......... onto~ -Matrniix labr
-*x-~a~ceCono1-Quaerlo MAlgbr

.ABSTRACT~ HECRANI.T ARTS .. GENERAL UTILITY PARTS

-Abet Xa ot: k.eeeses

Figure 2.1 The CAMP Parts Taxonomy.

Parts that were developed under the CAMP project were largely source code using

the Ada generic package capability, some specific data types and operations common to

the majority of the systems studied, and schematic parts, or templates that can be called

up and customized by user. The CAMP approach is oriented toward composing systems

by retrieving parts from a software base and combining them into systems or subsystems.

The composition uses an expert system containing database search rules and combination

17

rules for the individual components and rules for combining components into

subprograms. More detail on CAMP is presented in Appendix A.

D. AN IDEAL SOFTWARE GENERATION SYSTEM

In previous sections the two general categories of software generation systems were

described. There are some obvious tradeoffs made when building a system using either

approach. An ideal system would include both of these approaches allowing for the

combination of the benefits of each. There would be components of this system that

would be able to combine reusable source level components as well as generation

components used to build new components by transforming specifications. The structure

of such a system was described by the CAMP project developers and is shown in Figure

2.2 [Ref. 1: p. 50].

The ideal system would -)e controlled by an expert system containing both

application domain and programmh-A8 knowledge It would have database and knowledge

base components. And it would have the capability to generate software from an input

requirement through either, or a combination of generation and composition techniques.

18

Iu r 2 FAt I Doc I I I I IgG I

EXPERT

SYSTTS ME

Tpo

tserpnp

Figure 2.2 An Ideal Software Generation System

E. THE COMPUTER AIDED PROTOTYPING SYSTEM ENVIRONMENT

The Computer Aided Prototyping System (CAPS) is a tool which is being developed

to support software development through the implementation of a rapid prototyping

methodology [Refs. 10,111. CAPS is designed to aid the software designer in the analysis

of hard, real-time systems using specifications and reusable software components to

automate the rapid prototyping process. It uses a high level prototyping language called

19

the Prototyping System Descriptive Language (PSDL) [Ref. 12]. Its major goals are to

decrease the development time and increase the quality of production code by iteratively

prototyping the system and/or key subsystems until the requirements and specifications

needed to build the production system are firm. The major components of the system are

shown in Figure 2.3 [Ref. 6: p.9].

As previously mentioned, software generation is not the primary goal of CAPS.

However the identification of reusable software components can greatly aid in both the

reduction of development time and accuracy goals of CAPS. CAPS reusable components

are stored as objects representing the encapsulation of various programming structures

SOFTVARE BASE

DESIGN DATABASE
SO FTVARN BASE

IAIAGEMEIT SYSTEI

GRAPFICS SYNTAX

EDITOR DIRECTED USE0R
EDITO R

USER IITERACE

IXICUTION SUPPORT

Figure 2.3 The Computer Aided Prototyping System

20

which are of use to the designer in choosing the data types and operations needed to

implement programs in the given application domain. The software base component is

currently implemented as a collection of Ada related objects stored in an object-oriented

database. Actual Ada source code is an attribute of the stored object as well as other

information needed for matching PSDL descriptions to corresponding Ada

implementations. For any given domain the number of objects which may be stored is

large. The current database organization is shown in Figure 2.4 [Ref. 61. It provides for

only two classes, or groupings of objects. This makes the problem of finding objects a

very long and difficult one. This thesis concentrates on ways to improve the organization

of the database to support identification and retrieval of reusable objects.

COMlP0ONE NT

TYP 0 P E RATO R

Figure 2.4 The Current Software Base Organization

21

F. OBJECT-ORIENTED DATABASES

Object-oriented databases have become increasingly popular as an element of design

environments. The object oriented paradigm has shown particular promise in the area of

computer assisted design and manufacturing environments (CAD/CAM) [Ref. 13].

Object-oriented databases are also becoming more common as components of software

development environments. Therefore it is appropriate to discuss this area in some detail.

The following discussion of object-oriented concepts further justifies the continued

inclusion of this type of database for the Software Base Management System of CAPS.

1. Object-Oriented Concepts

Before explaining the object-oriented database in more detail a brief review

of object-oriented concepts is required. One accepted definition of object-oriented is

[Ref. 14]:

object-oriented = objects + classes + inheritance

The concept of an object is based on the principles of data abstraction and information

hiding [Ref 15: p. 2]. Data abstraction represents a system as a set of objects and the set

of operations characterizing the behavior of the objects [Ref. 15: p. 2]. Information

hiding decomposes a system into components, each characterized by knowledge of a

design decision hidden from all others [Ref. 15: p. 3]. Classes are templates from which

individual instances of objects may be created by "create" or "new" operations. Classes

are organized in hierarchies to facilitate the inheritance of attributes and methods used by

22

that class. Inheritance is a mechanism which allows a class to inherit operations from

superclasses and also allows subclasses of the class to inherit its operations [Ref. 14].

Theoretically a given class of objects may have many subclasses or superclasses.

However, practically, most languages implementing object-oriented concepts organize the

class structure into a hierarchy using only single inheritance. An object of a given class

may have many subclasses, but only one directly connected superclass.

Object-oriented approaches were first used as a means of exploiting encapsulation.

Encapsulation is necessary to ease the development and maintenance of larger systems

by decomposing the larger system into smaller encapsulated subsystems. Typically, the

encapsulated subsystems are thought of in terms of "objects" rather than "programs" and

"data" [Ref 15: pp. 3-4]. You adopt a particular object model and then encapsulate

objects in terms of a visible interface, called operations, while hiding the object's

implementations and data structures. Just how object-oriented languages provide

constructs for defining useful kinds of objects can be discovered in an analysis of the

issues of software reusability. Reusability of programming objects is supported by the

packaging of objects in such a way that they can be conveniently reused without

modification to solve new problems [Ref. 15: p. 51.

Object-oriented development is the use of object-oriented concepts in the analysis,

design, and implementation of software systems [Ref. 15: p. 3]. Object-oriented

development leads to architectures that are based on systems manipulating objects. Rather

23

than concentrate on what the system does, using this method of develo.ment the

concentration is on what the parts of the system do or have done to them by other parts

[Ref. 14].

2. The Class Hierarchy of Objects

In object-oriented programming one of the main advantages is the ability to

reuse existing attributes and methods defined for a given class of objects in the subclasses

of that object. Often the definition of new object classes is accomplished by refinement

or specialization of already existing classes. The newly defined object class inherits all

or many of the characteristics (attributes and methods) of its superclass and may either

add or refine methods in its own definition. A sample inheritance hierarchy is shown in

Figure 2.5 [Ref. 15].

PUBLIC

Ef A INRP I IO

% to

Figure 2.5 A sample Class Hierarchy of Objects

24

In this example the entire hierarchy is based on the specialization of the objects by adding

more detail as we go down the hierarchy. The objects at the lower levels inherit all of

the characteristics of the higher levels. But the characteristics of the more general

superclasses remain available to, or are inherited by, the more specialized object classes.

This is the idea of the "is-a" relationship used as the basis for classification in object-

oriented systems. The Ship is-a public vehicle, that is, it is a specialization of the public

vehicle class. It has all the characteristics of the public vehicle plus other specialized

characteristics that distinguish it from its more general superclass.

3. Object-Oriented Programming and Rapid Prototyping

As previously described, object-oriented programming methodologies

concentrate on the use of inheritance for code reuse between objects within the same parts

of a hierarchy. They also focus on the use of encapsulation to insure that individual

objects are as independent as possible. It is this second aspect that is the most important

in the context we are discussing. In the general case, a program or program module can

be described as an entity (object) that has some input and output, and performs some

transformation. This description of a program module can form the basis for

encapsulating ideas, or threads, that an individual program module represents. If this

approach is taken throughout the design of a software system, the successive iterations

of problem decomposition eventually form objects at a very low level, which capture

25

small subsets of the overall requirement into individual entities (objects). Thus an object

may be represented by the function it performs.

4. A Database of Objects to Support Rapid Prototyping

With these basic definitions in mind, how do we merge the concepts of OOP

languages with database management technology and rapid prototyping? Galik lists some

of the more significant properties of an OODBMS [Ref. 61. These include persistency,

active data, extensibility, and abstraction. He points out that data objects must be "non-

volatile" while maintained within the database [Ref. 6: p. 30]. A database requires that

the persistence of its data "transcend" that of individual programs which may have a

"short" lifetime. Since objects "persist" between execution of operations they should

provide a better starting point for databases [Ref. 14]. The object-oriented database of

components used in CAPS can be thought of as a persistent entity in its own right. The

components that make up the database are only a portion of what we must consider when

comparing this form of database with other database models. Additionally, we must

consider the standard database functions which the OODBMS must provide. These

functions include concurrency control, recovery, transaction management, and security

found in all types of databases [Ref. 6: p. 30].

OODBMSs have many of the features necessary to aid in the retrieval and use of

complex data applications that are particular to computer aided prototyping. The

26

following are some of the features identified in OODBMSs as aiding in rapid prototyping

[Ref. 13: pp. 32-35]:

a. Increased modeling power over relational models. Relational models have
trouble forcing real-world objects into fixed programming constructs and are often
inadequate to store complex info.

b. A set of predefined system types (such as set, queue, stack, and list). Avoids
cluttering the solution with data specific routines.

c. Stores the data structure (object) directly on the disk. Avoids extra code required
for loading and mapping disk information to the usual memory data structures if the
language supports object persistence.

d. Enforces data abstraction and data hiding. The programmer needs only to know
what the objects do.

e. Supports code reusability. The programmer can write less code while implementing
the same functionality.

f. "Triggers" modules to allow programmers to combine them as needed. It is hard
to make code generic enough to achieve the same effect without objects.

g. Allows generic programming through polymorphism and meta-information.
Polymorphism takes the parameters passed and automatically dispatches a call to the
correct routine called. Meta-information alleviates the need to hard-code user-defined
types in the program.

The following may be considered drawbacks of an OODBMS:

a. A long learning curve is associated with learning object programming.

b. Robust and reliable tools, such as source-level debuggers and fast compilers, are
not readily available.

c. Without implementation level knowledge, a programmer may not recognize a bug
hidden through abstraction.

27

d. Since semantic information is also stored with the object, it may require more
storage space than regular file based systems.

e. Strict type checking causes compile time performance to be worse than in other
database management systems.

G. DATABASE SUPPORT OF CAPS

The CAPS environment is oriented toward the development of programs using an

object-oriented approach that will be implemented using a conventional programming

language, in this case Ada. Conventional programming languages have constructs that

are used in implementing modules, that also have their own descriptions (functions and

procedures, for exar- 1 . This programming language information may also be useful

in designing ino adual objects in the manner described above. But to effectively reuse

objects designed using conventional programming languages there are other issues that

must be addressed. One of the more important is how to store the objects for easy

retrieval. This is the area of classification. One of the goals of building programs from

encapsulated modules of code is to reuse code previously used in the program, or in

similar programs developed in the past. This is where the use of object-oriented

databases of reusable software components comes into the development process. The

classification of reusable components into a hierarchy based on specialization of the

component object classes and methods provides the needed indexing information as well

as a code sharing (inheritance) capability for methods needed to use the objects.

28

Information presented in this chapter provides the needed guidelines for defining

the structure of an object hierarchy of reusable components to support the CAPS system.

Other parts of the CAPS system provide the aggregate constructor, or composition

mechanism, needed to combine objects stored in the database into larger programs. Using

the guidelines described in this chapter a proposed hierarchy of reusable components is

developed and the needed attributes and methods for the objects are identified.

29

III. PSDL AND THE CAPS ENVIRONMENT

In this chapter the Prototyping System Description Language (PSDL) is evaluated

for its effectiveness and potential as a classification and retrieval language for the

Software Base Management System. The Computer Aided Prototyping System is

described in some detail to show the interactions between the system components,

particularly those that interface with the Software Base Management System. A much

more detailed description of this latter area is contained in [Ref. 5]. PSDL is extensively

covered by [Refs. 12,16].

The focus of this chapter is on the development of an effective mechanism for

organizing the software base using concepts supported by PSDL. We outline a

classification scheme for storing components in the software base and the requirements

for processing PSDL specifications into a form that can be used to query the database.

This is followed by a discussion of a method of deriving a class hierarchy using PSDL

constructs and the results of the domain analysis. Finally the problem of finding

components in the class hierarchy is addressed through the development of some simple

access rules used as a front end to the database. Pre-processing these rules narrows the

search of the database.

30

A. PSDL AS A CLASSIFICATION LANGUAGE

PSDL holds a great deal of promise as a classification and retrieval language for

accessing the object oriented database of reusable components. It is a small, yet

powerful, language and is very compatible in its method of specification with that of the

Ada language. It can also be customized, through its keyword capability, to represent the

domains of interest covered by the software base. Appendix B contains the current

version of the basic PSDL grammar. In the following sections the use of PSDL

specifications to represent component specifications is discussed with particular emphasis

on the detail that is possible using basic PSDL augmented with a few keywords derived

from a sample domain analysis.

1. Mapping PSDL Descriptions to Ada source code.

A PSDL description of a component involves two main parts: a

SPECIFICATION and an IMPLEMENTATION. The SPECIFICATION part describes

component attributes including the component type, either OPERATOR or TYPE, INPUT

and OUTPUT variables, and information on requirements and constraints. The

SPECIFICATION part contains much of the information seen in the specification portion

of an Ada implementation of the part. A sample PSDL description with a corresponding

implementation is show-i in Figures 3.1 and 3.2. There are several areas of commonality

between a PSDL specification and an Ada component used to implement the specification.

31

PSDL DESCRIPTION

OPERATOR controllerstartup
SPECIFICATION

INPUT control-panel: real, sensor input: real
OUTPUT missilecontrol: real
MAXIMUM EXECUTION TIME 90ms
BY REQUIREMENTS controLpanelmax

DESCRIPTION
{ Extracts the control panel input and sensor input and

uses them to calculate the control signal for the missile.
}
END

Figure 3.1 Sample PSDL Component Description.

--ADA IMPLEMENTATION OF CONTROLLERSTARTUP

WITH weaponscontrollerpackage;
USE weapons controller-package;
PROCEDURE controllerstart-up(control-pane',,

sensor-input: IN float;
missilecontrol: OUT float)is

enablesignal: real;

BEGIN
enablesignal:=calculatecontrol(control_panel,

sensorinput);
missilecontrol:= enablesignal;

END controller startup

Figure 3.2 Sample Implementation of Figure 3.1

32

These areas can be useful in choosing reusable implementations meeting the requirements

described in a PSDL description. The most obvious areas of commonality are the direct

mapping of the types used in the specification and the implementation. The requirements

information stored in the component specification is useful as it may be possible to

identify other needed components from information contained in the requirements. In this

case the reference to the control-panel-max requirement is handled by the

weapons-controller-package. This package is referenced using the Ada WITH and USE

capabilities in the implementation of the component. The MAXIMUM EXECUTION

TIME specified may also be useful in choosing between possible implementations of this

component having the same name and capabilities, but different timing properties. The

information in the DESCRIPTION portion of the specification may be useful to the user

of a browsing system for discriminating between components by matching the

DESCRIPTION used in the PSDL component with documentation representing the

functionality of actual components.

2. Using PSDL to classify components

PSDL has several constructs included in the language that are useful for

grouping components. The areas that are important in the use of PSDL to classify objects

are the ability to classify objects as either OPERATORs or TYPEs, the INPUT and

OUTPUT types, and whether or not a component has or retains STATE (is a state

machine). The types of the INPUT and OUTPUT variables used in the OPERATOR

33

components must also be defined as TYPE components in the TYPE part of the software

base. If a component has states it must be represented by an abstract state machine

component, which corresponds to the machine type of operator in PSDL or an Ada

package [Ref. 17].

The KEYWORD capability provided by PSDL is also very useful in the

classification of Ada components for inclusion in the software base. The KEYWORD

is a capability of PSDL that allows augmentation by the user. When used in the

component classification and retrieval processes described in later sections, KEYWORDs

represent the major domains of interest. The definition of KEYWORDs to be used in a

given database of components is analogous to the development of the domain language

used in the Draco system mentioned earlier. In combination with the structures that

PSDL can describe in its basic form a classification scheme can be derived that will

greatly aid the user of the software base.

3. The Generalization Lattice Structure

The previous section described some of the more useful information provided

in the PSDL specification of a component. The problem now is how to use this

information to form a classification scheme for reusable components. The classification

scheme used for the software base must meet several requirements to be useful to the

prototyper. It must be easily extensible to allow evolutionary growth of the available

components. The user should be able to browse available components and select and

34

retrieve components efficiently. [Ref. 12: p. 70] To support these operations the software

base organization must be able to organize components in relatively small, yet distinct

classes. Since the goal of the system is to support the overall process of CAPS

development this organization should be largely transparent to the user. It must take into

consideration the implementation language as well. What follows is a description of a

classification scheme that meets these requirements for the OPERATOR type of

component.

In order to meet these goals a classification scheme based on categories of

information that can be derived from information provided in the Specification portion

of the PSDL description is used. A process known as generalization by category is useful

in describing the categories of components found in the software base [Ref. 101. The

OPERATOR type of component is particularly suited to this approach. An OPERATOR

in PSDL can be a machine or a function, depending on whether it has state.

Implementations of OPERATORS in the software base may be generic components or

specific pieces of source code representing the major building blocks available in Ada:

the package, procedure, function, or task. For these specific implementations we assume

that the types that appear in the specifications of these Ada units are restricted to types

already known to the software base management system and stored in the SPECIFIC

TYPE portion of the software base. A check of the specification can determine if the

PSDL component uses these types. If so it belongs to the category of components that

35

may have exact implementations in the software base. Otherwise, the component is

generic. Similarly, if the component has STATE it belongs to the category corresponding

to the machine type of PSDL operator.

The categories mentioned above are valid for all operators in the software base.

Additionally these categories may be combined to form a lattice structure that further

subdivides the OPERATOR side of the hierarchy into four distinct classifications based

on only the analysis of the basic PSDL structure. This lattice is shown in Figure 3.3.

0 perato r d Type

FUNCTION ru Specific MACHIN

and and and and
Gesei ic Specific Genetic Specific

Figure 3.3 The generalization lattice of categorical properties available in a
basic PSDL Specification

36

The lattice allows the specialization of OPERATOR components into four classes

which can easily be described and differentiated using apriori analysis of the component's

PSDL specification. While this is an improvement on the current classification scheme

[Ref. 6] there is still the problem of finding a way to further reduce the number of

potential components in each class. The lattice provides only a partial solution.

However, adding an additional dimension of domain description through the use of the

KEYWORD in PSDL can improve classification scheme even further. An example is

shown in Figure 3.4:

COMiPOMEUT

TYPE O PERATO R

DOMAIN A DOMAIV-Z

NACE@.OI ruIC.0EE NACESiP FI1C.S1 MAClI.01E FEC-05 XACI.SF TiECcsI

MACI.0EI - 6EIIEIC NACElIE PANTS

XACR.*U * SEECIFIC NACEllE PARTS

rllC.@EIl 01 €111C FIECTIOI PARTS

FrIC.e * SPECIFIC rllCTIOI #ANTS

Figure 3.4 OPERATOR classification with addition of Domain information.

37

We see that the number of available classes has been increased significantly from

the original single OPERATOR class. This has been done in an orderly fashion by taking

advantage of only the basic PSDL language augmented by an arbitrary number of domain

related keywords. This type of classification scheme would be adequate for many library

type of implementations. But it still does not take full advantage of the capabilities of

object-oriented databases. The next section further refines the classification scheme to take

advantage of the object-oriented model.

4. The class hierarchy of components

In order to effectively organize an object-oriented database more than just the

categories of objects must be considered. The previous section showed that PSDL

augmented by a domain language of KEYWORDs provides an effective means of

organizing domain related components into useful PSDL related objects. However the

methods required to incorporate the components into the prototype were not considered.

As previously mentioned, one of the advantages of the object-oriented model is the ability

to inherit attributes and methods down the class hierarchy. The inheritance of attributes

allows the definition of attributes for the entire OPERATOR hierarchy at the OPERATOR

class level and the inheritance of the attribute definitions unchanged throughout the

OPERATOR side of the hierarchy. The inheritance of methods problem is different.

The software base management system currently uses Ada as the target language

for source code portions of the code related objects. One of the parts of the Ada

38

language that is very supportive of reuse is the generic facility [Refs. 2,16]. Instantiation

of Ada generic packages and subprograms allows the multiple reuse of the same source

code within the same program. The instantiation method for the generic classes, is

different than that used by the specific classes. The problem with implementing these

methods using the previously described hierarchy is that there would have to be a specific

method attached to each class in the hierarchy. This makes inheritance of methods

useless to us in the design of the object-oriented database and greatly increases the

programming load. A better solution is to look at the problem of classifying objects as

either generic or specific implementations first, and then incorporating the domain

information. The modified hierrchy using this method of classification is presented in

Figure 3.5. The initial look at this scheme would make it seem that the hierarchy has

again been split in half, with the domain names duplicated. While this duplication has

occurred, and there is now another level added to the hierarchy, the actual number of

classes used to store the OPERATOR components remains the same. The difference is

that we can now handle generic and specific source code components with common

routines at a much higher level using inheritance to greatly reduce the load of the

database programmer. This class hierarchy allows the incorporation of the domain

knowledge into the hierarchy of components that can be described by PSDL and also

takes into consideration the major classifications of program units in the target

implementation language. Its final advantage over previously described methods

39

CO K PONE IT

TYPE OPERATOR

GENERIC

DO MAIIA . DOBAI . DOMAII.A DOMAII.Z

RACI.-I5 3 fllC.G1l K AC .SP Fl IC S

Figure 3.5 A class hierarchy for the PSDL OPERATOR type.

is its adaptability to the object-oriented classification model and its ability to support

inheritance of both attributes and methods. This is the recommended class hierarchy for

the software base. Actual attributes and methods for the objects contained in the database

will be described in more detail in the next chapter. However, it can be seen that for a

software base of reusable Ada components the use of PSDL with the addition of domain

dependent keywords provides the ability to classify components into classes of a much

more manageable size than currently exists. The hierarchy must still be accessed in some

manner in order to be useful. This is the subject of the next section.

40

B. SEARCHING THE OBJECT-ORIENTED DATABASE

The previous section describes a hierarchical structure of an object-oriented database

with classes derived from PSDL and domain related keywords. To effectively use the

database of components organized in this type of hierarchy, there must be a way to query

the database that limits the search to the classes that will most likely contain the needed

component. This query is formed from the PDSL specification by transforming the

specification using some simple rules. This section describes the process used in the

transformation and the role of the RULE objects in this process.

1. The Form of the Database Query

The transformation of a PSDL specification into a form that can be used to

query the database closely resembles the process used to classify the components into

categories. The end result of the transformation is a tuple consisting of information

needed select the classes having the best chance of containing the component object as

well as the information needed to identify particular objects within those classes. The

following information about a component is the minimum required to effectively query

the database. Other attributes can be used to find better matches; but, for purposes of this

discussion, are not included here:

Inputs: The set of input type names.

Outputs: The set of output type names.

SearchList: The set of classes to be searched.

41

The input and output sets allow for the determination of an approximate match of

individual components to the PSDL SPECIFICATION. The SearchList contains the list

of classes that, based on analysis of the specification, have the best chance of containing

the needed components. The first two of these attributes can be directly copied from the

SPECIFICATION. The SearchList is derived from the transformation of the domain

related KEYWORDs contained in the SPECIFICATION. This is done using the RULE

class objects related to each KEYWORD. This process is described in the following

sections.

2. The Structure of the RULE Objects.

There is a tradeoff involved in searching the database between the time

involved in searching all possible domains, which maximizes the probability of finding

a match, and the search of a limited number of domains, which may not find an existing

component. In order to maximize the possibility of finding a match for any given

KEYWORD, rules are used. The rules are based on the possible domains that may be

associated with a given component object. These domains are determined at the time the

reusable component is added to the database. A RULE object is used to store this

information. The RULE object also contains information related to the type of

OPERATOR component within each subclass of the domain. The general form of a rule

attribute is:

IF (TYPEMATCH, OPERATORTYPE, DOMAINNAME) THEN (Class-List)

42

The TYPEMATCH is the result of matching the INPUT and OUTPUT sets of type

names with the available types for the given domains in the type side of the component

hierarchy. TYPEMATCH identifies whether the component is in the specific or generic

portions of the hierarchy. If TYPEMATCH does not find a match, then only the generic

side of the hierarchy needs to be searched. The OPERATORTYPE is the result of

finding the reserved word "STATES" in the specification and will identify the component

as either a machine of function. The DOMAINNAME is a KEYWORD representing one

of the domains contained in the hierarchy.

There are rules for each possible subclass of a given domain related KEYWORD.

From the lattice structure presented earlier there are four subclasses for each domain

KEYWORD: Specific-Machines, SpecificFunctions, Generic_Machines, and

GenericFunctions. Therefore, there are four possible rules for deriving each domain

related Class_List. The attributes representing these rules correspond to the PSDL and

Ada related forms of the components. The SpecificMachine rule is used when the path

needed is to classes that may contain 4 possible exact match of a specific Ada package.

In this rule's Classlist are the class names of the SpecificMachine classes for the

particular KEYWORD being processed and any other related domains determined during

component classification and entry into the database. The process of ClassList formation

for inclusion in the tuple used to query the database is described next.

43

3. The Transformation Process

The transformation process used here is a pre-processing step. It takes as input

the PSDL specification and produces one or more propositions that can be input into a

rule base. The rule base contains the list of classes that most likely contain a component

that matches all or at least part of the specification. In order to form the proposition(s)

the following must be determined:

1. Does the SPECIFICATION contain TYPEs that match those already contained in
the Specific portions of the database?

2. Is the component a state machine (Does the SPECIFICATION contain the word
STATES)?

3. Which domains have been identified by the user as most likely to contain the
components (What are the KEYWORDS)?

The first question is used to determine if the component is a specific component. If the

types all match those in the specific side of the TYPE hierarchy, then there is possibly

an exact match for this specification contained in one of the specific classes. If there is

not a specific type match (-TYPEMATCH) then limit the search to the generic classes.

If the SPECIFICATION contains the word STATES then the component is one of those

that represent a state machine. Finally, the domain(s) identified in the SPECIFICATION

represent the domains that must be checked for a possible match. The form of the

proposition is: (TYPE MATCH, OPERATOR TYPE, (DOMAINLIST)).

44

However, the rules used to match the proposition require that each domain be

identified separately. So before the rule base is accessed the DOML'_LIST is broken

into its individual components and the result is one or more propositions of the form:

(TYPEMATCH, OPERATOR-TYPE, KEYWORD)

There is one proposition for each keyword contained in the specification. These

propositions are then asserted in the rule base and matched against existing rules to

determine Classlists for each given domain given the form of the component.

As previously mentioned the rules above are stored in a RULE object in the

database. The rule objects are analogous to frames. In each domain or frame of

reference the possible forms of components are stored along with the possible classes that

may contain matching components. Therefore based on the discussion of the lattice of

classification there are four rules for each domain. The forms are:

1. The Generic Machine rule:

(-TYPEMATCH, MACHINE, KEYWORD) ->

(GenericMachineClassList)

2. The Specific Machine rule:

(TYPEMATCH, MACHINE, KEYWORD) ->

(SpecificMachineClassList)

45

3. The Generic Function rule:

(-TYPEMATCH, FUNCTION, KEYWORD) ->

(GenericFunctionClassList)

4. The specific function rule:

(TYPEMATC4, FUNCTION, KEYWORD) ->

(SpecificFunctionClassList)

The SearchList is formed from the transformation of each of the domain related

propositions using the union of all the ClassLists. In short the transformation process

can be described by the following steps:

1. Convert the SPECIFICATION into a basic proposition containing the results of
the Type-Match and Operator-Type functions and the DomainList.

2. For each KEYWORD form a proposition in the form of a rule antecedent.

3. While there are still propositions to process:
Match to Rule-base to get Class-list
Perform Uniorn with previous Classlist

4. Return final ClassList. This is the SearchList.

The final returned Classlist identifies the classes to search. It includes all the classes

identified by the user as well as those identified in the classification process of the

individual objects as they were added to the database and included in the rules. It is this

46

list that is used control the search of the object-oriented database. An example of this

process is shown in the next section.

C. A SAMPLE USE OF THE CLASSIFICATION SCHEME

The previous sections have shown how PSDL could be used as a classification

language for storing reusable components in an object oriented database. In this section

an example is presented using the component desciption and implementation shown in

Figures 3.1 and 3.2 and the sample taxonomy shown in Figure 2.1. Component

classification, including a description of the associated RULE object, performed by the

database administrator at the time the component is loaded, and the derivation of the

SearchList, required for search and retrieval operations, are shown for the sample

specification and implementation.

1. Classification of the Reusable Component.

The component shown in Figure 3.2 is an example of a specific function in

terms of PSDL. The use of the taxonomy previously described would place this function

into one of three domain related classes: Guidance and Control, Asynchronous Control,

or Specific Equipment Interface. The classification selected is a function of the database

administrator using input from the domain analysts. But, regardless of the selected

category, the cross-referencing information is built into the associated RULE object for

the selected class. In this case the object is classified as an instance of the class

SpecificFunctionGuidanceand Control. The Specific Function attribute of the RULE

47

object corresponding to Guidance_andControl is updated to reflect the other possible

domains. The form of the specific function attribute for guidance and control is now:

(TYPEMATCH,FUNCTION,(Guidance_andControl)) ->

(Guidance_andControlFunctionSP,

AsynchronousControlFunctionSP,

SpecificEquipmentInterfaceFunctionSP)

This process is done for each component when added to the database. For purposes of

illustration we assume that the Asynchronous Control and Specific Equipment Interface

rules have the specific function attributes shown next.

The Specific-Function rule for Asynchronous Control:

(TYPEMATCH,FUNCTION,(AsynchronousControl)) ->

(Asynchronous ControlFunctionSP,

GeneralPurposeEquipmentjInterfaceFunctionSP,

GuidanceandControl_FunctionSP,

NonGuidanceControlFunctionSP)

48

The Specific-Function rule for SpecificEquipmentInterface:

(TYPEMATCHFUNCTION,(SpecificEquipmentInterface)) ->

(SpecificEquipment_InterfaceFunctionSP,

General_PurposeEquipmentInterfaceFunctionSP,

Guidance_andControlFunctionSP,

CommunicationsFunction_SP,

NavigationFunctionSP,

Non_Guidance_ControlFunctionSP)

The final part of the classification process involves updating the TYPE side of the

hierarchy to include objects referencing the INPUT and OUTPUT types used by this

OPERATOR component. Once all these operations have been accomplished the

component is stored. The method of retrieval is described in the next section.

2. Retrieval of Components from the Software Base.

Retrieval operations are triggered by the CAPS user during the process of

specifying a PSDL operator. The input into this process is the PSDL description

augmented with KEYWORDS. Figure 3.6 shows an augmented PSDL specification for

the controller-start-up OPERATOR shown previously.

49

PSDL DESCRIPTION

OPERATOR controllerstartup
SPECIFICATION

INPUT control-panel: real, sensor-input: real
OUTPUT missile_control: real
MAXIMUM EXECUTION TIME mu
BY REQUIREMENTS control-panelmax

KEYWORDS GuidanceControl, SpecificEquipmentInterface
DESCRIPTION
{ Extracts the control panel input and sensor input and

uses them to calculate the control signal for the missile.
I
END

Figure 3.6 Sample Augmented PSDL Component Description.

The addition of the KEYWORDS allows the component description to be processed using

the method described in this chapter. The Types would be selected from the domains

referenced in the component description and used to determine the TYPEMATCH part

of the proposition. The examination of the description shows no STATE variables, which

sets the second part of the proposition to FUNCTION. The domain list is the list of

KEYWORDS contained in the descripti, In this case there are two members contained

in the domain list. This results in two assertions to process and one Union operation of

the class lists returned from the rule base. The SearchList derived from processing this

component is:

50

(Guidanceand_ControlFunction_SP,

AsynchronousControlFunction_SP,

SpecificEquipmentInterfaceFunctionSP,

GeneralPurpose-EquipmentInterface-FunctionSP,

CommunicationsFunctionSP,

NavigationFunctionSP,

NonGuidanceControlFunctionSP)

This list and the PSDL description are then input into the object-oriented database to

continue the attempt to match this specification with a reusable component. The list

limits the classes to search and the PSDL description provides the information needed to

conduct the more detailed operations required for selection of components from the

database and incorporation of the component into the prototype.The inclusion of the rules

derived from the classification process insures that a more complete search will be done

and solves many of the problems associated with cross referencing. A system that

implements this process is the goal of the design effort. A structure that supports this

effort is described in the next chapter.

51

IV. CONCEPTUAL DESIGN OF THE SOFTWARE BASE

In this section an extended conceptual design of the software base is presented. The

goal is to integrate the concepts presented earlier in the discussion of domain analysis,

rule based systems, and object oriented programming and databases, into the design of

a subsystem that extends the current approach used in CAPS. The objective of the design

presented here is to identify the major objects that are required to implement this

subsystem. Additionally, for the object-oriented database component, the classes of objects

and the methods required of these classes to support the ultimate goal of integration of

reusable components into a CAPS prototype as well as the basic functions required for

building and maintaining this database, are described.

The design presented here is generic in nature. It describes a database that

represents domains by defining small classes of reusable component objects using

concepts from the domain analysis and the PSDL language and organizing them into a

hierarchy. It also stores rules for each domain in a specialized object class. The search

of this database is aided by the transformation of the specification prior to querying the

database as described in Chapter III. The results of the transformation and application of

rules is the identification of the classes to search in the database.

52

The discussion begins with the description of the reusable software base and its

interface to the CAPS system. This is followed by an explanation of the major

subsystems required to integrate reuse into the system. This description will be presented

following the object-oriented analysis metliodology described in Chapter II. Finally the

major forms of the objects used to store reusable components and the specialized class

used to store the rules is presented. The attributes and methods that each of the major

object classes need to support the required system functions is described in sections

detailing each major object class.

A. THE REUSABLE SOFTWARE BASE SYSTEM ARCHITECTURE

Chapter II presents an overview of the CAPS architecture. The Software Base

Management System component contains two supporting databases: a database of

reusable software components and a design database. The component we are concerned

with here is the reusable software base. For purposes of this discussion the design

database can be considered another part of the CAPS environment described in Figure 4.1.

This is reasonable because its interface with the software base of reusable components is

the same as that of the other components of CAPS. Other parts of the environment that

interface with the reusable software component subsystem are the syntax directed editor

and the translator. In all cases the basis of the interface is a PSDL specification.

53

CAPS P RE

PROCESS0OR

USER OBJECT-
ORIENTED

INTERFACE
DATABASE

ENVIROV HENT SUPPORT

Figure 4.1 The Software Base System Architecture

The major parts of the software base of reusable components subsystem are the pre-

processor, object-oriented database and the decision support modules. These are

described in the following sections.

1. The Preprocessor

The preprocessor consists of those parts needed to determine the SearchList

of classes likely to contain reusable components. Included in this module are a parser

that does the transformation of the PSDL specification into a proposition and the rule

54

base. The rule base is formed by retrieving selected rule objects from the rule class in

the object-oriented database. Specific rule objects are determined by the DomainList

formed during the transformation of the specification. Associated methods contained in

the rule class are covered in the description of the rule class later in this chapter.

2. The Decision Support Module

This module performs the functions of object selection and incorporation of

the reusable software component into the prototype. There are a number of alternatives

that can be considered in the implementation of this module. These include the

implementation of a manual means of browsing components identified during the iteration

through the classes, the selection through automated analysis of other parts of the

specification or, more likely, a combination of the two. Research in this area is currently

underway. The proposed structure is designed to support this research.

3. The Object-Oriented Database

This module contains the actual components with the attributes and methods

needed to support addition, deletion, modification, and update of rules used to support the

search and selection of components. Note that methods must exist that allow the database

to interact with both of the other modules. The structure of the database and the

attributes and methods are described in the next section.

55

B. THE STRUCTURE OF THE OBJECT-ORIENTED DATABASE

There are three main types of objects that are needed to implement reuse in the

CAPS software base of reusable components. Two are already supported to a limited

extent - TYPES and OPERATORS. These classes of components represent the major

constructs used in PSDL. However, the previous design [Ref. 6] is oriented to storing

and retrieving components which are already well known by the user. To properly use

the software base, the user must know the exact name of the component to retrieve it.

The approach taken in this design is to create a class hierarchy to support a search based

on partial description of the object as described in Chapter III. To do this the TYPE side

of the class hierarchy is expanded to include subclasses associated with the application

domains that they are used in. The OPERATOR class is expanded in a similar manner

incorporating domain related classification into the expanded hierarchy well as

information on the form of the component from the target implementation language. To

support search operations an additional object class, containing RULE objects, is added.

The RULE class contains the simple rules used to support search and retrieval operations.

A top-level description of the extended database hierarchy is shown in Figure 4.2. All

classes in an object-oriented database are defined as subclasses of some basic object class

that provides the basic attributes and methods needed to provide basic database operations

such as add, delete, modify etc. These attributes and methods are inherited and may be

modified further down the class hierarchy. We assume that this is the case in this design

56

is the case in this design and use the class labeled OBJECT as the base class. The

following sections further elaborate the top-level classes attached to the base class and

describe the required attributes and methods of these types of objects. Many of these

attributes and methods are inherited from higher levels, but modified to provide additional

capability.

OBJECT

Figure 4.2 The Class Hierarchy

57

1. The TYPE Objects

The TYPE hierarchy, or subtree of the component hierarchy, is composed of

objects that support the Ada type definitions used in the component objects found in the

OPERATOR portion of the database. From the domain analysis and commonality studies,

types used in the implementation of OPERATORs and associated with the application

domains in the software base are identified. It is this association that is used to form the

hierarchy of types. An example of such a hierarchy is shown in Figure 4.3.

TYPE

GENERIC SPE IFIC

DO AIN.A . .OMAII.Z ONAIIA 1KAII.2

Figure 4.3 The TYPE hierarchy.

58

Each of the actual objects is basically the same. The classification scheme is

merely a means of organizing the objects into a hierarchy based on the application

domains. There are two advantages to this separation. First, the operations and the

attributes needed by all TYPEs can be described once at a higher level and inherited by

each of the domain dependent subclasses. The operations needed to support retrieval can

also be stored at a higher level and invoked by sending the message to the object class

at the domain level. The operation is inherited and applied to the referenced class.

Second, capabilities to provide indexing information are often provided for classes defined

in an object-oriented database at the class level. The subdivision of TYPE into the

smaller domain related classes allows us to take advantage of this capability in the actual

implementation.

The following are the required attributes and methods for the TYPE side of the

hierarchy in the Software Base:

Attributes:

Name: A string representing the Ada Type Name. Inherited from the Component
Class definition.

OperatorList: The set of associated OPERATORs in the same domain using this
type. Supports Add and Delete Operations in the OPERATOR hierarchy. Can also
be used to trigger delete operations for individual instances of TYPE objects.

Ada_Text: The actual text of the type declaration in Ada Syntax. Definition
inherited from the Component class.

59

Description: Information which describes the type and may be useful while
browsing the database.

PSDL Specification: The PSDL specification for the TYPE. PSDL Descriptions
are required for more detailed analysis.

Methods:

Add-Type: Supports the addition of components to the software base by updating
the types contained in the domain of the added component. Used in conjunction
with AddOperator method in the OPERATOR side of the hierarchy. Types are
only added when required to support OPERATORS.

DeleteType: Supports deletion of types, as required, from the software base.
Deletion is done when all OPERATORS contained in the OperatorList have been
eliminated. Done in conjunction with, and triggered by the deletion of OPERATOR
components.

Get-type: Used to get the Ada text representation of the type. May be used in
display operations or operations to incorporate class into program. Displays the
AdaText and description to the screen.

Formtype-list: Used to reference the class hierarchy for class names contained in
the Domainlist formed as part of the transformation process of the PSDL
specification. Returns the objects found in each of the classes. Used in
transformation process of PSDL SPECIFICATION to proposition. Supports the
TYPEMATCH operation described earlier.

This description includes the minimum required set of operations and attributes.

This section of the hierarchy has a great deal of future potential. For example, an area

which may benefit from the reuse of class information is the definition of data streams

in the graphical editor. However, since the main problem addressed in this thesis is

retrieval of the OPERATOR type objects, the discussion of the TYPE hierarchy and

60

objects is limited to the attributes and methods needed to support the maintenance of the

database and retrieval of OPERATORS.

2. The OPERATOR Objects.

The OPERATOR objects represent and encapsulate the major reusable

components contained in the software base. It is here that the actual code of Ada

procedures, functions, and packages is stored. Galik provides a good description of the

major portions of the OPERATOR class used for each of the objects [Ref. 61. However,

since he provides only one OPERATOR class, he does not address one of the strengths

of object-oriented databases. This is the ability to successively specialize objects in a

hierarchical fashion. Figure 4.4 shows an example of this expanded hierarchy. The

specialization of object classes by functional areas defined during domain analysis,

combined with the major forms of OPERATORS that can be represented in PSDL results

in an expanded hierarchy that can be searched more efficiently.

The requirements of the prototyping system make it necessary to store more than

just source code in the component objects. Attributes such as timing characteristics and

other descriptive information must be put into separate portions of the object to assist in

the evaluation and selection process. There is also a need to store information needed to

cross reference objects and classes. This is done for two reasons. The first is to insure

a complete search is conducted during retrieval operations. The second is to insure that

all components needed to properly use the referenced component are also found. Two

61

OPERATOR

GENERIC SPE TIC

DOKAIIA .#. .A. I -O0 IHAII. -.A DOMAIIIZ

MACI.GIi rFIC.GI g1 ACHSP 1 C .S

Figure 4.4 The OPERATOR hierarchy.

attributes are defined to provide the additional information needed to support these

operations. The fust of these is a "Withing" list which is used to locate support modules

needed by the component to be properly used in a program. This directly corresponds

to the With of the Ada language. The other main reference attribute is a set of related

classes. This is required because of the possibility of overlap between the functional

domains. Any given component will be classified into one domain related class.

However some may have applicability to more than one class. A master path list

containing the names of all domains related to the members of each class is maintained

62

in the RULE object section of the database. The attributes and methods needed for all

objects at the base level of the OPERATOR section of the hierarchy are:

Attributes:

Name: The name of the component. This name is the same as that of the Ada
component stored in the text portion of the object.

Inputs: The set of variable and type names used in the implementation of the
object.

Outputs: The set of variable and type names used in the implementation of the
object.

With: The set of objects used to fully implement the operations of the component
object using the Ada "With" capability.

Pathlist: The set of related classes that may also contain modules with the same
or related functionality as the referenced component.

Requirementslist: Used to describe the functionality of the component. In PSDL
terminology the "BY REQUIREMENT" phrases would be stored in this construct.
This attribute is not required for the search or retrieval process described here. May
be useful in the Decision Support module for more detailed analysis of the
individual component objects.

Description: Text describing the module. In the form of the PSDL
SPECIFICATION with documentation added as natural language text.

Source: The Ada code of the specification and body of the component.

Timing: Maximum Execution Time. The timing characteristics may also be detailed
as separate attributes.

63

Methods:

Get-theObject: Needed to support further processing or display of the object for
review by the user.

Display-Description: Displays the Description text only for evaluation by the user.

Add-Operator: Used by the software base administrator or librarian to add
components of type OPERATOR to the database and update associated TYPE and
RULE objects. Refines the basic add operation defined at higher levels in the
hierarchy.

Modify-Operator: Needed to change information (attributes) of the individual
objects. Used by the system administrator or librarian. Refines modify operations
inherited.

DeleteComponent: Used to delete components no longer needed and update
associated TYPE and RULE objects. Also a function of the database administrator
or librarian. Updates the OperatorList on the TYPE side of the hierarchy and may
cause the method to delete a TYPE to be activated. Refines inherited methods to
delete objects.

WriteComponent: Refines inherited write methods inherited from the Component
class. Used to add selected objects to the prototype in progress. As CAPS is
currently implemented this method would open and write to the file the source code
for the selected object. This method would vary depending on the location of the
selected object in the hierarchy. There are two main options:

Specific OPERATORS: This method will copy the text of the source
attributes.

Generic OPERATORS: The instantiation will be done using the
WriteComponent method found in the generic side of the OPERATOR class
hierarchy. This is an example of overloading of method names allowed in
object-oriented languages as explained in Chapter II.

GetAxiom: This method is used for support of more detailed matching operations
currently being researched. The AXIOM is a CAPS construct used to more fully
describe in formal terms the OPERATORS.

64

The attributes and methods presented here are considered the minimum required to

support the process of matching PSDL specifications to reusable software components

described in this thesis. There are many other requirements that must be met as part of

the software development process. Some of these include version control, for the objects

contained in the database, and documentation requirements supporting the requirements

definition and design processes CAPS is designed to support. These are just two of the

areas that may be expanded in future research.

3. The RULE Objects.

Objects contained in this class are used to assist in the selection of classes in

the OPERATOR portion of the database to search based on the query formed by

transformation of the PSDL specification. The goal of the rule base is identify the "most

likely" class(es) to search in the database. The RULE class contains simple first order

logic representations of the SearchLists (or maybe more appropriately class lists) that

match the pattern of the input proposition formed by transforming the PSDL specification

into a proposition that can be used by the rule base. The end result of the processing

done by the rule base, as described in Chapter III, is a master search list of potential

cl. -es which may contain the required objects. This list used to guide the subsequent

search of the database.

The rules themselves are built by using the basic features expected from any PSDL

component on the left hand side of the rule (the antecedent) and the related class lists

65

found in the objects of each domain's specific and generic classes on the right hand side.

As new objects are added to each class, the related class list is compared to that already

existing for the class. If some new element is found in the class list it is added to that

portion of the corresponding rule object's list.

The description of the class RULE objects follows:

Attributes:

Name: The domain name of the domain being represented by the rules stored in
this object.

GenMachinePath: Rule representing the path (class list) to be searched if the
antecedent results in limiting the search of related classes to only generic classes.
The generic machine rule.

GenFunctionPath: Rule representing the path (class list) to be searched if the
antecedent results in limiting the search of related classes to only generic classes
that do not contain machines. The generic function rule.

SpecificMachinePath: The comprehensive search path for the named starting
domain. This path list contains all of the classes including generic and specific for
the named domain of interest. The specific rule for finding machine components.

SpecificFunctionPath: The comprehensive search path for the function
components. This path list contains all of the classes including generic and specific
for the function components. The specific rule for finding function components.

Methods:

GetRules (Domainlist): Method to build the rule base from the identified domain
lists. Called by the -reprocessor module. Rules returned are used to get the class
list that is searched.

66

Add_Rule: Method to create instances of the class rule when creating new domains
of objects in the database. Inherited from the OBJECT class and triggered by the
creation of a new class by the database administrator or librarian. Initially it would
be empty. As objects were added it would be updated using the modify rule
method below.

ModifyRule: (Domain_list): For an existing instance this method takes a modified
list of domains and modifies the GenPath and SpecificPath attributes to reflect
changes in the Path-list of the domain related class (found in the OPERATOR
hierarchy). This method would be used by each OPERATOR create process.
Performs a comparison of the new domain list included with the newly created or
modified object and would perform an "OR" or Union type operation on the lists
to insure any new classes were added to the path lists.

DeleteRule: When an entire domain related group of classes are no longer
required the rule object related to this domain would have to be deleted. This
method would be inherited from the basic OBJECT class and triggered by
maintenance programs used by the database administrators.

The processing of the rules is part of the preprocessing done prior to the actual

search of the OPERATOR portion of the database. It is, therefore, important to decide

at what point in the prototyping session the rule base gets built. The major question to

be answered is whether or not to build a comprehensive rule base at the beginning of

each session, limit the operator of the CAPS to some subset of domains per session, build

a new rule base for every query, or start with a rule base formed from a given set of

domains and continue to add rules as more domains become active during the session.

The approach in defining the attributes and methods used in the RULE class definition

is to remain flexible enough to support any of these approaches.

67

C. SUPPORT OBJECT CLASSES AND COMPOSITION OF OBJECTS

One of the more important capabilities of the object-oriented development model

and object-oriented databases in particular has not yet been considered. When designing

the detailed implementation it will be necessary to provide the user capabilities to display

the object or perform manipulation on various attributes. Rather than define methods for

manipulation of each part of an object, we can take advantage of system supplied object

classes that can be composed into parts of the specialized objects we are interested in.

In Object-oriented databases there is often an environment already available built on to

the basic Object definition and inherited by, or in some way made accessible to all

subclasses of object. This is the case in the Ontos system [Ref. 19], the projected

implementation system for the expanded software base described in this thesis. The next

chapter describes some of the more useful capabilities this system may provide in support

of the construction of the expanded Software Base Management System.

68

V. IMPLEMENTATION ISSUES

The previous chapter describes the needed objects and organization of the class

hierarchy to support selection of reusable software components using simple rules to

determine where to start the search. The major goal addressed in the description of the

objects was to identify the structures needed to support the search process. The overall

goal of the pre-processor and database components of the system described here is to

narrow the number of candidate objects and present a best qualified set of candidates to

the decision support component of the system for more detailed analysis. To insure a

more complete search of the database, cross-referencing information needed to support

this search is stored as one attribute of the major types of reusable component objects.

Additional attributes needed to support user interface, documentation, and more detailed

matching operations are not included in this description. Supporting object classes

included in the implementation environment are a means of further abstracting portions

of the custom object. The design presented is based on exploiting the object-oriented

model and the concepts of domain analysis for a generic domain. Chapter IV avoids

specific issues related to the actual building of this system. In this chapter some of these

issues are addressed.

69

A. THE ONTOS OBJECT-ORIENTED DATABASE SYSTEM

Ontos is the system currently projected for the implementation of the Software Base

Management Component of CAPS [Ref. 19]. It is the second effort from the developers

of the VBase OODBMS system currently used in CAPS [Ref. 6]. There are several major

improvements that are included in this product. It is designed to provide direct object

access from C++ applications and to provide much better performance than VBase. Plans

are to improve the overall environment to ultimately provide a graphical oriented

environment to support graphical schema definition and modification, menu, form and

report generation, query by example, database browser, and simple applications generation

[Ref. 19: p. 5]. It is one of the first commercially available object databases supporting

the C++ programming language.

The classes provided by Ontos contain many of the support objects previously

mentioned as important to the implementation of the expanded software base system. The

built-in data types provided by the interface language, Aggregate Classes used to collect

groups of objects, and an Iterator Class which can be used to step through the attributes

of individual objects or Aggregates of objects are probably the most important. These

and other support classes and functions are contained in the Client Library provided by

Ontos. [Ref. 19: pp. 51-96]

The base classes of the Ontos system are the CleanupObj, Entity, and Object.

CleanupObj provides the Iterator capabilities useful in stepping through the attributes of

70

individual objects or objects collected in aggregates. Entity provides uniform reference

semantics for classes and C++ primitives. Primitives represent the C++ built-in types.

Object provides persistent object definition for objects stored in the database. The schema

definition, directory capabilities, and Aggregate classes mentioned previously as important

to the implementation of the search and retrieval methods described in this thesis are also

derived from this class. Classes for defining the operations and attributes to be included

in objects of the customized classes are included here as well. The Object class provides

operations that can be used in the definition of more complex methods at different levels

in the hierarchy. For example, modification of the New-Instance constructor function for

the OPERATOR class described in the previous section to allow the update of the RULE

class object associated with this class could be done at the OPERATOR level and

inherited to each of the subclasses. [Ref. 19: pp. 50-961

In summary the Ontos object database has adequate capability to quickly implement

the database needed to support the reuse system described in this thesis. It also has the

capability, using the Set class and Iterators, to support operations that further narrow the

number of possible objects selected as candidates for detailed matching operations

performed by the decision support module described earlier. This would further aid the

decision process this system is designed to support. Implementation of a system using

Ontos is required to test many of these features.

71

B. PROTOTYPING OF THE EXPERT SYSTEM COMPONENTS

Two of the three components described in the architecture of the expanded software

base management system are based on expert systems. The Ontos system described

previously provides the capability for providing the needed information to support both

the pre-processing and decision support components of the software base management

system described here. The C and C++ programming languages are useful for building

higher performance expert systems than those written in Lisp and Prolog. However this

conversion is normally done only after the concepts are proven and performance becomes

the primary consideration. There is a general method used in expert systems

development. In the systems surveyed as part of this thesis the expert systems

components were all developed as follows: [Refs. 1,3,19-21]:

1. Problem Assessment (Domain Analysis)

2. Prototyping and Knowledge Base Construction

3. Software Engineering and Program conversion

The expert system components were not converted until the knowledge and rules needed

for the problem domain were reasonably firm. It is then that performance becomes the

major issue. The methodology presented in this thesis and the process of domain

language development for use in CAPS would benefit greatly from the construction of a

prototype expert system which could be continually improved. New rules and expanded

72

frames of reference could still be incorporated into the RULE objects in the OODBMS

and used by a system based on the interface language of the database.

C. THE REUSABLE SOFTWARE COMPONENTS

As previously noted the reusable components in a given system ma" have many

different definitions. In CAPS the system is relatively flexible, allowing systems to be

specified at various levels of abstraction. Subsystems representing high level systems and

many lines of code can be stored in the same database providing low-level functions.

This makes it possible to reuse code written at varying levels of abstraction and from a

variety of sources.

The CAMP project also took an approach similar to that used in CAPS for

development of a set of parts (reusable components) [Refs. 22-25] to support the missile

embedded systems environment. Many of the modules in CAMP represent embedded

system functions that are applicable across a wide range of embedded systems

applications. Not all of CAMP can be used, and because of the composition strategy used

in CAMP there are several components that may require restructuring to be used in

CAPS. This is, however, the best source of real components for embedded systems use

that was found during this research. Another source which has many components which

may prove useful is the Ada Software Repository [Ref 26]. Many mathematical and data

structure parts can be found in this system. However, the organization of this system

does not make it easy to find any particular component.

73

D. DEVELOPMENT STRATEGY

The preceding sections have mentioned many of the areas that must be considered

in the development of the proposed system. The normal development of a domain related

programming library or reusable component database relies on the development of domain

dependent systems that cannot be easily expanded or reconfigured to add new classes to

the system. The development of flexible database support for a specific application

domain is based on having the ability to add, delete or reorganize entire classes in the

database. The system described here allows a modular development strategy. It is

possible to reconfigure the domain language by identifying the domain related

KEYWORDS from those already in the database adding those needed to describe new

classes of components. This development strategy allows the development of new

application specific rule bases using already existing classes and reuse of existing RULES.

74

VI. CONCLUSIONS AND RECOMMENDATIONS

A. SUMMARY

The CAPS environment is a collection of tools which allow the development of

systems using a methodology based on iterative decomposition and refinement of

programs supporting hard real-time requirements. The CAPS system uses the Prototyping

System Description Language (PSDL) to support this development process. Descriptions

of subsystems or program modules written in PSDL may be further decomposed,

translated or incorporated into the prototype in the form of a reusable software

component. The subsystem used to manage reuse in CAPS is the software base

management system. This subsystem does the identifies and supports incorpor-:ion of

reusable software components into the prototype. This is done through analysis of the

PSDL description, search of the database of reusable components for potential matches,

and detailed matching operations to determine if an acceptable component exists.

The previous organization of the software base of reusable components is not

adequate to perform its intended function effectively or efficiently. In this thesis a

revised and expanded structure for the software base was presented that takes advantage

of the object-oriented model and characteristics of object-oriented databases to allow the

classification of reusable components into classes which are more representative of the

given application domain. As part of this process PSDL was evaluated for its

75

effectiveness as a classification language. PSDL in its basic form is adequate for the

classification of OPERATORS and TYPES into the basic forms used during prototyping

sessions. PSDL augmented with a few domain oriented keywords which are allowed in

the language definition further improves the ability of the developers to incorporate

domain knowledge into the reuse system. Using PSDL augmented by keyv.ords allows

the developers of prototyping systems supporting particular areas to build reusable

component databases v'hich represent the major objects or subsystems and functions for

identified domains of interest.

The use of rules to support retrieval of components from the database was also

explored. Again, the focus was on evaluation of rules which could be described using

parts of the specification portion of a PSDL description. The goal of the rule base is to

identify the most likely class or classes to search for components. The rules are stored

in specialized objects in the database and provide cross referencing information needed

to insure a more complete search of the database for the desired component. The PSDL

description is transformed into one or more propositions that can be asserted in the rule

base to get a list of the classes most likely to contain the component. This list along with

the description form the input to the object-oriented database and provide needed

information to perform more detailed matching operations needed to select components

fu: -icorporation into the prototype.

76

During the course of this research several areas of commonality became apparent

in research efforts aimed at reuse of software. All were using some sort of rule base to

determine the transformation or composition strategies to be used. All were oriented

toward the transformation of some higher order language into a form that could be used

to either find components stored in a database or generate components in a target

language. All approaches used some form of pattern matching to rate and select

components. None were able to totally automate the process for any but the smallest

problems. But, in examining the composition based systems, there were as many different

composition methods as there were systems. All the other subsystem designs were driven

by the design of the composition system.

There are three major activities involved in the selection of reusable components

from the software base: transformation of the specification into a form that can be used

to query the database; search of the database and retrieval of candidates for analysis; final

detailed analysis of the component for possible incorporation into the program or in this

case prototype. Follow-on research in this area should focus on implementation of these

functions as separate subsystems either within or as interfaces to the object-oriented

database of reusable components.

B. RECOMMENDATIONS FOR FURTHER RESEARCH

This thesis identifies three major subsystems which are involved in the

implementation of an effective mechanism for incorporating reuse into CAPS. None of

77

these methods are implemented. The following recommendations are made for research

based on these areas:

Preprocessor and rule base: Implementation of the rule base based on the structure
of the rules described in this thesis. Expansion of the rule base through addition
to the domain language of concepts allowing higher levels of abstraction.
Implementation of a parser to transform the PSDL description into a proposition
and a rule base constructor method to retrieve the rule objects from the database
and form the rule base.

The Object-Oriented Database: Design and implementation of a class hierarchy
based on the results of a domain analysis using the method of object classification
described in this thesis. An existing domain analysis and the components designed
to support a composition based system is part of the CAMP project. Many of the
CAMP components are applicable to a number of application domains in the area
of embedded hard real-time systems. Other areas of interest include: evaluation
of the SQL capability provided by Ontos to further narrow the number of candidate
objects prior to detailed matching operations; the storage of documentation
information in the database and the automatic generation of documentation required
to support the requirements definition for the prototype as well as parts catalogs
describing the components stored in the system.

" The Decision Support Subsystem: There is currently ongoing research in the area
of detailed matching of specifications in order to do the rating and selection of a
component from a set of candidate components. However, it is unlikely that the
user would be totally excluded from this process. Research on Browsing and
implementation of a browser within this subsystem is required to allow the user to
more effectively participate in the final selection of the component object.

C. CONCLUSIONS

The Computer Aided Prototyping System and the Prototype System Description

Language provide the capability to effectively integrate reusable software components as

part of a software system prototype. PSDL supports the concepts of object-oriented

78

analysis and can be used as the basis for both classification of reusable components and

development of rule based systems to aid in component retrieval. Object-Oriented

database technology, while still relatively new, offers the capability to support this process

in a way that allows the reuse system to take advantage of the strengths of the

prototyping language as well as the target implementation language. Domain analysis of

the application domain is also important to the process of building the database to support

prototyping. This thesis proposes a method that can be used to take advantage of all of

these areas in the construction of an expanded system to support the reuse goals of CAPS.

Implementation of the structure and methods described here will provide a basis for the

continued improvement of the reuse capability in the CAPS environment.

79

APPENDIX A. THE COMMON ADA MISSILE PARTS PROJECT

The Common Ada Missile Parts Project (CAMP) is an ongoing effort started in

1984 by the Air Force Armaments Test Laboratory and performed by McDonnell Douglas

Astronautics Company with the goal of implementing software reuse in the development

of missile related embedded systems. This project was studied in detail during research

for this thesis for the following reasons:

1. It is an effort to build a real system for software generation in the embedded
systems environment.

2. It applies many of the concepts of reusable software engineering described in this
thesis as required to support the construction of an expanded reuse system in CAPS.

3. Both CAMP and CAPS use Ada as the target implementation language in the
application domain of a hard real-time systems. Many of the reusable software
components (parts) developed for CAMP may be useful as components of the CAPS
software base.

4. The conceptual methodologies of CAMP and CAPS are very similar. Comparison
of the two approaches is useful for showing the areas of commonality and difference
between a prototyping environment and an environment oriented toward software
generation. Additionally, comparison of the approaches to composition used in CAPS
and CAMP may be useful in development of the rules and methods used in the CAPS
Software Base for interacting with the object-oriented database of reusable
components.

This section presents a summary of the CAMP approach and brief descriptions of the

highlights of research conducted as part of this project that merit further study for

80

possible incorporation into the CAPS environment. Included in this discussion are the

methods used by the developers to define the application domain of the system, the

methods considered and finally chosen for the construction of the reusable software

components in CAMP, the cataloging of components for storage in a software library, and

the proposed design of an expert system which will be used to perform the composition

and translation of specifications into programs. This final system is still being developed;

but, expert assistance is currently in use for the catalog component of the library to assist

in search and retrieval of components.

A. DOMAIN ANALYSIS IN CAMP

In Chapter II the area of domain analysis was defined as an approach that can be

used to define domain related categories of operations, objects, and structures [Ref. 1: p.

15]. Results of the domain analysis can be incorporated into classification schemes,

domain languages used by expert systems, and even the design of individual components

used to make up the classes of reusable components. The taxonomy of reusable parts for

the CAMP project was presented as an example of one of these products. Domain

analysis was reflected in all areas of the project. There were three steps involved in the

domain analysis performed for this project:

1. Domain Definition: The process of -letermining the scope of the domain analysis.
This includes an analysis and formal definition of the boundaries of the domain,
an analysis of overlapping areas which may be included in the domain but are also
appropriate in other areas, and areas of intersection between application or domain
independent areas and domain specific areas.

81

2. Domain Representation: The selection of a set of applications used to characterize
the domain under investigation.

3. Commonality Study: Analysis of previous domain related implementations to
identify the common objects, operations and structures that are candidates for
construction as reusable software components.

Domain definition requires direction from the projected users. It is important that

the domain definition and boundaries be established early in the domain analysis process

to avoid the problems of expanding beyond the boundaries into overlapping domains.

Once the domain is defined a set of common applications within the domain of interest

are selected for analysis. Again this activity involves the users of projected systems as

well as previously developed systems. The quality of the remaining domain analysis and

the time involved in completing the analysis can be greatly influenced by the quality and

availability of system documentation and source code. The CAMP developers found that

requirements and design information were much more valuable than the source code in

the process. These documents were also much less likely to be up to date or even

available at all for older systems.

The final stage of the domain analysis, the Commonality study looked at the

commonality of the selected missile systems. A functional strip method was used to

analyze particular functions. This method involves the examination of the actual

implementations of common functions performed in the majority of the systems looking

82

for commonality of both the specific implementations and the supporting parts of the

subsystem being examined [Ref. 1: pp. 21-23].

One of the more interesting concepts exploited in the CAMP project was the

identification of vertical and horizontal domains within the application area [Ref 1: pp.

17-18]. Vertical domains are application dependent groupings of software systems most

closely related to subsystems that they represent or support. Horizontal domains are

application independent groupings with the common objects and functions representing

such categories as abstract data structures, mathematical functions and other relatively

common categories. These two domain types allow the identification of components in

multiple functional areas based on the intersections between the two types of domains.

The taxonomy presented earlier represents groupings of components based on both types

of domains. The following is a summary of the groupings by domain type:

Horizontal Domains: Data Package Parts, Abstract Mechanism Parts, Process
Management Parts, Mathematical Parts, General Utility Parts.

Vertical Domains: Equipment Interface Parts, Primary Operation Parts.

The result of the domain analysis conducted as part of the CAMP project was the

development of parts in the horizontal domains that supported the subsystem level objects

and functions required by the vertical domains.

83

B. ADA LANGUAGE CONSIDERATIONS

Ada is the target implementation language for CAMP parts. The major Ada

constructs considered in the implementations were the package and Ada generic

capabilities. The goal for implementation of the parts was to use packages to group

related groupings of code and, where possible, make the parts generic. IP their analysis

of the design methods to be used to implement the reusable parts they considered six

methods which are summarized below [Ref. 1: pp. 38-50]

1. Typeless method: In this method all data objects and actual parameters are of
type float. Alleviates the need for special mathematical operators and functions
since they are all defined in standard packages for type float. Its severe
disadvantage is that type checking cannot be done by the compiler and runtime
system because all objects are of the same type.

2. Overloaded Method: Provides a user with a single package containing multiple
implementations of the specification using the various allowable data types. The
Ada language allows this overloading and it would be extremely simple.
However, it would require the implementation/reimplementation of the same
function many times to accommodate all combinations of desired data types.

3. Generic Method: Use of the Ada generic facility to define a part that can be
instantiated using user defined types. Again, this method takes advantage of an
important feature of the Ada language, but places the burden of supplying the
instantiation information on the user. Its main advantage is flexibility in the use
of data types.

4. State Machine Method: Defining "black box" objects having a single set of
external interfaces with operations which permit a user of the machine to examine
the internal state of the machine or change the state of the machine. Alleviates
the data typing and mathematical problems of the other methods. But adds the
need to convert all data to the part's internal format which can result in additional
overhead.

84

5. Abstract Data Type Method: Similar to the State machine method but less
flexible in implementation. The types must be included in both the specification
and the body portions of the Ada parts. Would require more implementations to
provide similar capabilities to those of the State Machine.

6. Skeletal Code Method: Development of templates which may be manipulated
using manual methods or an expert system to build components from user supplied
types and required functions as well as other parts. This method was discarded
primarily due to the complexity involved in implemertation of this approach using
current technology. As expert systems improve this approach may become more
viable.

The selected approach for design of CAMP parts were the generic and overloaded

methods described above. There are however, specific instances of abstract data types

state machines, and schematic included in the CAMP parts that were ultimately

developed.

C. THE PARTS CATALOG

As part of the project a great deal of effort was placed on the identification of

attributes and documentation on individual parts that can be stored in a cataloging system.

[Refs. 22-25] The conclusions of the research in this area were that the catalog developed

during the building of a software parts library should contain the necessary attributes

needed to find the components as well as documentation needed to produce required

documents as part of the software development process. They developed a sample listing

of attributes and implemented a catalog system using a relational database as part of the

project. The discussion of this area contained in the overview document contains

85

information and references that are very important in the incorporation of documentation

capabilities into the CAPS system.

D. THE ADA MISSILE PARTS ENGINEERING EXPERT SYSTEM (AMPEE)

During this research an expert system was designed and prototypes are continually

being improved that will result in a composition based software generation system for the

missile systems domain. An extensive amount of information on the goals of expert

systems in software generation is presented as well as an overview of many of the more

prominent efforts in this area. The approach used for integration of expert systems into

the component retrieval from the parts catalog described in this thesis are conceptually

very similar. The CAMP developers also outline many other issues not included in this

thesis. Their system is designed to support the composition of parts in a different way

than that used by CAPS. Their research does seem to confirm that the method of

composition or generation of components is the major determining factor in determining

the form of the software base and expert systems support used to incorporate reusable

components into a program.

E. OVERALL UTILITY OF THE CAMP PROJECT

The CAMP Project provides a source of detailed research on many of the technical

and managerial issues related to development of software generation systems in general

and software generation systems using reusable components and composition based

strategies in particular. The documentation provided by the project is a valuable source

86

of overview information and provides many pointers to detailed information on the

subject area. There have been over 400 actual parts developed to date. The descriptive

information provided with these parts [Refs. 22-25] was analyzed as part of this thesis.

The parts provide many functions which may be useful in building a sample domain for

use in CAPS.

Applying the classification scheme described in this thesis to the parts described in

CAMP revealed that at the subsystem level, or within the vertical domains, a relatively

even distribution of components is possible. However for the horizontal domains there

was a tendency for the parts to be clustered in the generic function area. It may be

possible to more evenly distribute these components in a CAPS reusable software base

by providing instantiation information in the specific classes for the various components

in the horizontal domains. This would add to the number of parts available in the CAPS

software base, with a minimum of actual source code being required for these new

specific objects (instantiation code only). The generic objects would be referenced in

these new objects and would remain intact.

The CAMP project provides a source of information and software that has the

potential to greatly expand the current software base used by CAPS. Detailed

examination of the parts is still required. But, the initial analysis shows that these parts

may form the basis of the expanded software base to support CAPS.

87

APPENDIX B. THE PSDL GRAMMAR

This grammar uses standard symbology conventions. (Curly Braces) enclose items

which may appear zero or more times. [Square Brackets] enclose items which may

appear zero or one time in a rule. Bold Face items are terminal keywords. Items

contained in "Double Quotes" are character literals. The "I" vertical bar indicates a list

of options from which no more than one item may be selected. This grammar represents

the updated version of the PSDL grammar as of 20 June 1990.

Start = psdl

psdl = (component)

component = datatype I operator

data-ype = type id type-spec type-impl

operator = operator id operator-spec operator-impl

type-spec = specification [genericparam] [type-decl]

(operator id operatorspecl [functionality] end

typelimpl = implementation ada id "{" text ")" end

I implementation type-name

(operator id operator-impl) end

88

operator spec = specification (interfa, [functionality] end

operator-impl = implementation ada id "{" text"}"

I implementation psdl-impl

typedecl =
id._list ":" type-name ("," id-list ":" type-name)

functionality = [keywords] [informaldesc] [formal-desc]

psdljimpl = dataflow-diagram [streams] [timers] [control-constraints] [informal-desc]

end

type-name = id I

id "[" actual_parameterlist "]" I

id "[" typedecl "]"

actual-parameterlist = actualparameter

("," actual-parameter)

Atual-parameter = type-nqme I expression

interface = attribute [reqmts_trace]

idlist = id ("," id)

keywords = keywords idlist

informal_desc = description "(" text")"

formal desc = axioms "{" text ")"

dataflow-diagram = graph (vertex) (edge)

89

streams = data stream typedecl

timers = timer idlist

attribute = input
I output
I genericparam
I states
I exceptions
I timing-info

input = input typedecl

output = output type-decl

generic-param = generic type_decl

states = states typedecl initially expressionlist

exceptions = exceptions idlist

timing-info = [maximum execution time]
[minimum calling period time]
[maximum response time time]

reqmts-trace = by requirements idlist

vertex = vertex op-id [":"time]

edge = edge id [":"time] op-id "->" opid

op-id = id ["(" [idilist] "I" [id_list] ")"I

control-constraints = control constraints (constraint)

constraint = operator id
[triggered (trigger I [trigger] if predicate) [reqmts_trace]
[period time [reqmts-tracel]
[finish within time [reqmts_trace]]
(constraintoptions)

90

trigger = by all idlist
I by some idlist

constrainLoptions =
output idlist if predicate [reqmts-trace]

I exception id [if predicate] [reqmts_trace]
I timer-op id [if predicate] [reqmts-trace]

timer-op = read timer
I reset timer
I start timer
I stop timer

expressionlist = expression {"," expressior.}

time = integer [unit]

unit = ms I sec I min I hours

expression = constant
I id
I type-name "." id "(" expression_list ")"

predicate = simple-expression
I simple-expression rel-op simple-expression

simple-expression = [sign] integer [unit]
I [sign] real
I [not] id
I string
I [not] "(" predicate ")"
I [not] boolean_constant

bool-op = and I or

91

rel-op = "<" I"<=" 1 '5" I ">=" I "=" I "/=" I

real = integer "." integer

integer = digit(digit)

booleanconstant = true I false

numericconstant = real I integer

constant = numericconstant I booleanconstant

sign = "+" I

char = any printable character except "}

digit = "0 9"

letter = "a z" I "A .. Z"I

alpha-numeric = letter I digit

id = letter{ alpha-numeric)

string = text

text -- (char)

92

LIST OF REFERENCES

1. McDonnell Douglas Astronautics Co., Common Ada Missile Packages (CAMP)
Project. Volume I.: Overview and Commonality Study Results, McDonnell Douglas
Astronautics Co., St. Louis, Missouri, May, 1986.

2. Booch, G., Software Components with Ada, The Benjamin/Cummings Publishing
Company Inc., Menlo Park, California, 1987.

3. Barr, A., Cohen, P. R. and Feigenbaum, E. A. eds, The Handbook of Artificial
Intelligence Volume IV, Addison Wesley Publishing Company, Inc., Reading,
Massachusetts, 1989.

4. Biggerstaff, T. J. and Perlis, A.J., eds. Software Reusability, Volume I, Concepts
and Models, ACM Press, New York, New York, 1989.

5. White, L.J., The Development of a Rapid Prototyping Environment, M.S. Thesis,
Naval Postgraduate School, Monterey, California, December 1989.

6. Galik, D.A., A Conceptual Design of A Software Base Management System for the
Computer Aided Prototyping System, M.S. Thesis, Naval Postgraduate School,
Monterey, California, December, 1988.

7. Steigerwald, R. A., Reusable Software Components, M.S. Thesis, University of
Illinois at Urba:,a-Champaign, 1986.

8. Biggerstaff, T. J. and Perlis, A.J., eds. Software Reusability, Volume II,
Applications and Experience, ACM Press, New York, New York, 1989.

9. Coello, E. M. P., Cogritive Issues in Software Reuse, M.S. Thesis, Naval
Postgraduate School, Monterey, California, June, 1985.

10. Luqi, and Ketabchi, M., A Computer Aided Prototyping System, IEEE Software,
March, 1988, pp. 66-72.

11. Luqi, Software Evolution Through Rapid Prototyping, IEEE Computer, May 1989,
pp. 13-25.

93

93 IlI lllllIII

12. Luqi, Berzins, V., and Yeh, R., A Prototyping Language for Real-Time Software,
IEEE Transactions on Software Engineering, October, 1988, pp. 1409-1423.

13. Gupta, R., Cheng, W., Gupta, R., Hardonag, I., and Breuer, M.A., An Object-
Oriented VLSI CAD Framework, IEEE Computer, May 1989, pp. 28-37.

14. Kim, W., and Lochovsky, F. H., eds., Object-Oriented Concepts, Databases, and
Applications, ACM Press, New York, New York, 1989.

15. Comer, E.R., Ada Box Structures Methodology Handbook, Software Productivity
Solutions Inc., Melbourne, Florida, July, 1989.

16. Berzins, V., and Luqi, Semantics of a Real Time Language, Technical Report,
Naval Postgraduate School, Monterey, California, September, 1988.

17. Department of Defense, Reference Manual for the Ada Programming Language,
ANSIIMIL-STD-1815A, U.S. Department of Defense, 1983.

18. Ontologic Incorporated., Ontos Database System Documentation, Ontologic Inc.,
Burlington, Massachusetts, March, 1990.

19. McDonnell Douglas Astronautics Co., Common Ada Missile Packages (CAMP)
Project. Parts Composition System Vol 1., McDonnell Douglas Astronautics Co.,
St. Louis, Missouri, March, 1988.

20. McDonnell Douglas Astronautics Co., Common Ada Missile Packages (CAMP)
Project. Parts Composition System Vol 2., McDonnell Douglas Astronautics Co.,
St. Louis, Missouri, March, 1988.

21. McDonnell Douglas Astronautics Co., Common Ada Missile Packages (CAMP)
Project. Parts Composition System Vol 3., McDonnell Douglas Astronautics Co.,
St. Louis, Missouri, March, 1988.

22. McDonnell Douglas Astronautics Co., Common Ada Missile Packages (CAMP)
Project. Parts Catalog. Vol I., McDonnell Douglas Astronautics Co., St. Louis,
Missouri, March, 1988.

23. McDonnell Douglas Astronautics Co., Common Ada Missile Packages (CAMP)
Project. Parts Catalog. Vol 2., McDonnell Douglas Astronautics Co., St. Louis,
Missouri, March, 1988.

94

24. McDonnell Douglas Astronautics Co., Common Ada Missile Packages (CAMP)
Project. Parts Catalog. Vol 3., McDonnell Douglas Astronautics Co., St. Louis,
Missouri, March, 1988.

25. McDonnell Douglas Astronautics Co., Common Ada Missile Packages (CAMP)
Project. Parts Catalog. Vol 4., McDonnell Douglas Astronautics Co., St. Louis,
Missouri, March, 1988.

26. Conn, R., The Ada Software Repository and the Defense Data Network, Zoetrope
Publishing Co., Inc., New York, New York, 1987.

95

BIBLIOGRAPHY

Altizer, C., Implementation of a Language Translator for the Computer Aided Prototyping
System, M.S. Thesis, Naval Postgraduate School, Monterey, California, December, 1988.

Association for Computing Machinery, OOPSLA '86 Conference Proceedings, Special
Issue of SIGPLAN Notices, Vol. 21, No. 11, November, 1986.

Association for Computing Machinery, OOPSLA '87 Conference Proceedings, Special
Issue of SIGPLAN Notices, Vol. 22, No. 12, December, 1987.

Association for Computing Machinery, OOPSLA '87 Addendum to the Proceedings,
Special Issue of SIGPLAN Notices, Vol. 23, No. 5, May, 1988.

Barr, A. and Feigenbaum, E. A., Editors, The Handbook of Artificial Intelligence, Volume
1, HeurisTech Press, Stanford, California, 1981.

Barr, Avron, Cohen, Paul R. and Feigenbaum, Edward A. eds., The Handbook of
Artificial Intelligence Volume IV, Addison Wesley Publishing Company, Inc., Reading,
Massachusetts, 1989.

Biggerstaff, T. J. and Perlis, A. J., eds. Software Reusability, Volume !, Concepts and
Models, ACM Press, New York, New York, 1989.

Biggerstaff, T. J. and Perlis A. J., eds. Software Reusability, Volume II, Applications and
Experience, ACM Press, New York, New York, 1989.

Booch, Grady. Software Components with Ada, The Benjamin/Cummings Publishing
Company Inc., Menlo Park, California, 1987.

Booch, Grady. Software Engineering with Ada, The Benjamin/Cummings Publishing
Company Inc., Menlo Park, California, 1983.

Booch, G., Object Oriented Development, IEEE Transactions on Software Engineering,
Vol. SE-12, No. 2, February, 1986.

96

Brackett, J.W., Software Requirements, SEI Curriculum Module SEI-CM- 19-1.0, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, December
1988.

Cashman M., Object-Oriented Domain Analysis, Software Engineering Notes, Vol. 14,
No. 6, October, 1989.

Coello, E. M. P., Cognitive Issues in Software Reuse, M.S. Thesis, Naval Postgraduate
School, Monterey, California, June, 1985.

Comer, E.R., Ada Box Structures Methodology Handbook, Software Productivity Solutions
Inc., Melbourne, Florida, 31 July, 1989.

Conn, R., The Ada Software Repository and the Defense Data Network, Zoetrope
Publishing Co., Inc., New York, New York, 1987.

Davis, A.M., A Comparison of Techniques for the Specification of External System
Behavior, Communications of the ACM, vol. 31, no. 9, September, 1988.

Department of Defense, Military Standard for Defense System Software Development,
DOD-STD-2167A, U.S. Department of Defense, 1987.

Douglas,B.S., A Conceptual Level Design of a Design Database for the Computer Aided
Prototyping System, M.S. Thesis, Naval Postgraduate School, Monterey, California,
December, 1988.

Galik, D.A., A Conceptual Design of A Software Base Management System for the
Computer Aided Prototyping System, M.S. Thesis, Naval Postgraduate School, Monterey,
California, December 1988.

Gupta, R., Cheng, W., Gupta, R., Hardonag, I., and Breuer, M.A., An Object-Oriented
VLSI CAD Framework, IEEE Computer, May, 1989.

Jordan, P.W., Keller, K.S., Tucker, R.W., and Vogel, D., Software Storming, IEEE
Computer, May, 1989.

Kim, W., and Lochovsky, F. H., eds., Object-Oriented Concepts, Databases, and
Applications, ACM Press, New York, New York, 1989.

Luqi, Software Evolution Through Rapid Prototyping, IEEE Computer, May, 1989.

97

Luqi, and Ketabchi, M., A Computer Aided Prototyping System, IEEE Software, March,
1988.

Luqi, Berzins, V., and Yeh, R., A Prototyping Language for Real-Time Software, IEEE
Transactions on Software Engineering, October, 1988.

McDonnell Douglas Astronautics Co., Common Ada Missile Packages (CAMP) Project.
Volume I.: Overview and Commonality Study Results, McDonnell Douglas Astronautics
Co., St. Louis, Missouri, May, 1986.

McDonnell Douglas Astronautics Co., Common Ada Missile Packages (CAMP) Project.
Parts Catalog. Vol 1., McDonnell Douglas Astronautics Co., St. Louis, Missouri, March,
1988.

McDonnell Douglas Astronautics Co., Common Ada Missile Packages (CAMP) Project.
Parts Catalog. Vol 2., McDonnell Douglas Astronautics Co., St. Louis, Missouri, March,
1988.

McDonnell Douglas Astronautics Co., Common Ada Missile Packages (CAMP) Project.
Parts Catalog. Vol 3., McDonnell Douglas Astronautics Co., St. Louis, Missouri, March,
1988.

McDonnell Douglas Astronautics Co., Common Ada Missile Packages (CAMP) Project.
Parts Catalog. Vol 4., McDonnell Douglas Astronautics Co., St. Louis, Missouri, March,
1988.

McDonnell Douglas Astronautics Co., Common Ada Missile Packages (CAMP) Project.
Parts Composition System Vol 1., McDonnell Douglas Astronautics Co., St. Louis,
Missouri, March, 1988.

McDonnell Douglas Astronautics Co., Common Ada Missile Packages (CAMP) Project.
Parts Composition System Vol 2., McDonnell Douglas Astronautics Co., St. Louis,
Missouri, March, 1988.

McDonnell Douglas Astronautics Co., Common Ada Missile Packages (CAMP) Project.
Parts Composition System Vol 3., McDonnell Douglas Astronautics Co., St. Louis,
Missouri, March, 1988.

98

McDonnell Douglas Astronautics Co., Common Ada Missile Packages (CAMP) Project.
11th Missile Application. Volume 2. Top-Level Design., McDonnell Douglas
Astronautics Co., St. Louis, Missouri, March, 1988.

Meyer, B., Reusability: The Case for Object-Oriented Design, IEEE Software, Vol. 4, No.
2, March, 1987.

Mills, H.D., Linger, R.C., and Hevner, A.R., Box Structured Information Systems, IBM
Systems Journal, vol 26., no. 4, 1987.

Parnas D.L., On the Criteria To Be Used in Decomposing Systems Into Modules,
Communications of the ACM, Vol. 5,No. 12, December, 1972.

Seidewitz, E.. General Object-Oriented Software Development: Background and
Experience, Journal ot Systems and Software vol. 9, 1989.

Shlaer, S. and Mellor, S.J., An Object-Oriented Approach to Domain Analysis, Software
Engineering Notes, Vol. 14, No. 5, July, 1989.

Steigerwald, R. A., Reusable Software Components, M.S. Thesis, University of Illinois
at Urbana-Champaign, 1986.

Tsai, J. and Ridge, J.C., Intelligent Support for Specifications Transformation, IEEE
Software, November, 1988.

White, L. J., The Development of a Rapid Prototyping Environment, M.S. Thesis, Naval
Postgraduate School, Monterey, California, December, 1989.

99

Initial Distribution List

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

Dudley Knox Library 2
Code 0142
Naval Postgraduate School
Monterey, CA 93943

Director of Research Administration 1
Code 012
Naval Postgraduate School
Monterey, CA 93943

Chairman, Code 52 1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Office of Naval Research 1
800 N. Quincy Street
Arlington, VA 22217-5000

Center for Naval Analysis 1
4401 Ford Avenue
Alexandria, VA 22302-0268

National Science Foundation I
Division of Computer and Computation Research
Washington, D.C. 20550

Office of the Chief of Naval Operations 1
Code OP-941
Washington, D.C. 20350

Office of the Chief of Naval Operations I
Code OP-945
Washington, D.C. 20350

100

Commander Naval Telecommunications Command 2
Naval Telecommunications Command Headquarters
4401 Massachusetts Avenue NW
Washington, D.C. 20390-5290

Commander Naval Data Automation Command
Washington Navy Yard
Washington, D.C. 20374-1662

Dr. Lui Sha
Carnegie Mellon University
Software Engineering Institute
Department of Computer Science
Pittsburgh, PA 15260

COL C. Cox, USAF
JCS (J-8)
Nuclear Force Analysis Division
Pentagon
Washington, D.C. 20318-8000

Commanding Officer
Naval Research Laboratory
Code 5150
Washington, D.C. 20375-5000

Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ISTO)
1400 Wilson Boulevard
Arlington, VA 22209-2308

Defense Advanced Research Projects Agency (DARPA)
Director, Naval Technology Office
1400 Wilson Boulevard
Arlington, VA 2209-2308

Defense Advanced Research Projects Agency (DARPA)
Director, Prototype Projects Office
1400 Wilson Boulevard
Arlington, VA 2209-2308

101

Defense Advanced Research Projects Agency (DARPA)
Director, Tactical Technology Office
1400 Wilson Boulevard
Arlington, VA 2209-2308

Dr. R. M. Carroll (OP-01B2)
Chief of Naval Operations
Washington, DC 20350

Dr. Ainram Yehudai
Tel Aviv University
School of Mathematical Sciences
Department of Computer Science
Tel Aviv, Israel 69978

Dr. Bernd Kraemer
GMD Postfach 1240
Schloss Birlinghaven
D-5205
Sankt Augustin 1, West Germany

Dr. Robert M. Balzer
USC-Information Sciences Institute
4676 Admiralty Way
Suite 1001
Marina del Ray, CA 90292-6695

Dr. Ted Lewis
Editor-in-Chief, IEEE Software
Oregon State University
Computer Science Department
Corvallis, OR 97331

IBM T.J.Watson Research Center
Attn. Dr. A. Stoyenko
P.O. Box 704
Yorktown Heights, NY 10598

Dr. R. T. Yeh
International Software Systems Inc.
12710 Research Boulevard, Suite 301
Austin, TX 78759

102

Attn. Dr. C. Green
Kestrel Institute
1801 Page Mill Road
Palo Alto, CA 94304

Prof. D. Berry
Department of Computer Science

University of California
Los Angelas, CA 90024

Dr. B. Liskov
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
545 Tech Square
Ca.-" .1ge, MA 02139

Dr. J. Guttag
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
545 Tech Square
Cambridge, MA 02139

Director, Naval Telecommunications System Integration Center
NAVCOMMUNIT Washington
Washington, D.C. 20363-5110

Space and Naval Warfare Systems Command
Attn: Dr. Knudsen, Code PD50
Washington, D.C. 20363-5110

Ada Joint Program Office
OUSDRE(R&AT)
The Pentagon
Washington, D.C. 23030

CAPT A. Thompson
Naval Sea Systems Command
National Center #2, Suite 7N06
Washington, D.C. 22202

103

Dr. Peter Ng
New Jersey Institute of Technology
Computer Science Department
Newark, NJ 07102

Dr. Van Tilborg
Office of Naval Research
Computer Science Division, Code 1133
800 N. Quincy Street
Arlington, VA 22217-5000

Dr. R. Wachter
Office of Naval Research
Computer Science Division, Code 1133
800 N. Quincy Street
Arlington, VA 22217-5000

Dr. J. Smith, Code 1211
Office of Naval Research 1
Applied Mathematics and Computer Science
800 N. Quincy Street
Arlington, VA 22217-5000

Dr. R. Kieburtz
Oregon Graduate Centeri
Portland (Beaverton)
Portland, OR 97005

Dr. M. Ketabchi
Santa Clara University
Department of Electrical Engineering and Computer Science
Santa Clara, CA 95053

Attn. Dr. L. Belady
Software Group, MCC
9430 Research Boulevard
Austin, TX 78759

Attn. Dr. Murat Tanik
Southern Methodist University
Computer Science and Engineering Department
Dallas, TX 75275

104

Dr. Ming Liu
The Ohio State University
Department of Computer and Information Science
2036 Neil Ave Mall
Columbus, OH 43210-1277

Mr. William E. Rzepka
U.S. Air Force Systems Command
Rome Air Development Center
RADC/COE
Griffis Air Force Base, NY 13441-5700

Dr. C.V. Ramamoorthy
University of California at Berkeley
Department of Electrical Engineering and Computer Science
Computer Science Division
Berkeley, CA 90624

Dr. Nancy Levenson
University of California at Irvine
Department of Computer and Information Science
Irvine, CA 92717

Dr. Mike Reiley
Fleet Combat Directional Systems Support Activity
San Diego, CA 92147-5081

Dr. William Howden
University of California at San Diego
Department of Computer Science
La Jolla, CA 92093

Dr. Earl Chavis (OP- 162)
Chief of Naval Operations
Washington, DC 20350

Dr. Jane W. S. Liu
University of Illinois
Department of Computer Science
Urbana Champaign, IL 61801

1

105

Dr. Alan Hevner
University of Maryland
College of Business Management
Tydings Hall, Room 0137
College Park, MD 20742

Dr. Y. H. Chu
University of Marylandl
Computer Science Department
College Park, MD 20742

Dr. N. Roussapoulos
University of Maryland
Computer Science Department
College Park, MD 20742

Dr. Alfs Berztiss
University of Pittsburgh
Department of Computer Science
Pittsburgh, PA 15260

Dr. Al Mok
University of Texas at Austin
Computer Science Department
Austin, TX 78712

George Sumiall
US Army Headquarters
CECOM
AMSEL-RD-SE-AST-SE
Fort Monmouth, NJ 07703-5000

Attn: Joel Trimble
1211 South Fern Street, C107
Arlington, VA 22202

Naval Ocean Systems Center
Attn: Linwood Sutton, Code 423
San Diego, CA 92152-5000

106

